Few-shot NLP benchmark for unified, rigorous eval

Related tags

Deep Learningflex
Overview

FLEX

FLEX is a benchmark and framework for unified, rigorous few-shot NLP evaluation. FLEX enables:

  • First-class NLP support
  • Support for meta-training
  • Reproducible fewshot evaluations
  • Extensible benchmark creation (benchmarks defined using HuggingFace Datasets)
  • Advanced sampling functions for creating episodes with class imbalance, etc.

For more context, see our arXiv preprint.

Together with FLEX, we also released a simple yet strong few-shot model called UniFew. For more details, see our preprint.

Leaderboards

These instructions are geared towards users of the first benchmark created with this framework. The benchmark has two leaderboards, for the Pretraining-Only and Meta-Trained protocols described in Section 4.2 of our paper:

  • FLEX (Pretraining-Only): for models that do not use meta-training data related to the test tasks (do not follow the Model Training section below).
  • FLEX-META (Meta-Trained): for models that use only the provided meta-training and meta-validation data (please do see the Model Training section below).

Installation

  • Clone the repository: git clone [email protected]:allenai/flex.git
  • Create a Python 3 environment (3.7 or greater), eg using conda create --name flex python=3.9
  • Activate the environment: conda activate flex
  • Install the package locally with pip install -e .

Data Preparation

Creating the data for the flex challenge for the first time takes about 10 minutes (using a recent Macbook Pro on a broadband connection) and requires 3GB of disk space. You can initiate this process by running

python -c "import fewshot; fewshot.make_challenge('flex');"

You can control the location of the cached data by setting the environment variable HF_DATASETS_CACHE. If you have not set this variable, the location should default to ~/.cache/huggingface/datasets/. See the HuggingFace docs for more details.

Model Evaluation

"Challenges" are datasets of sampled tasks for evaluation. They are defined in fewshot/challenges/__init__.py.

To evaluate a model on challenge flex (our first challenge), you should write a program that produces a predictions.json, for example:

#!/usr/bin/env python3
import random
from typing import Iterable, Dict, Any, Sequence
import fewshot


class YourModel(fewshot.Model):
    def fit_and_predict(
        self,
        support_x: Iterable[Dict[str, Any]],
        support_y: Iterable[str],
        target_x: Iterable[Dict[str, Any]],
        metadata: Dict[str, Any]
    ) -> Sequence[str]:
        """Return random label predictions for a fewshot task."""
        train_x = [d['txt'] for d in support_x]
        train_y = support_y
        test_x = [d['txt'] for d in target_x]
        test_y = [random.choice(metadata['labels']) for _ in test_x]
        # >>> print(test_y)
        # ['some', 'list', 'of', 'label', 'predictions']
        return test_y


if __name__ == '__main__':
    evaluator = fewshot.make_challenge("flex")
    model = YourModel()
    evaluator.save_model_predictions(model=model, save_path='/path/to/predictions.json')

Warning: Calling fewshot.make_challenge("flex") above requires some time to prepare all the necessary data (see "Data preparation" section).

Running the above script produces /path/to/predictions.json with contents formatted as:

{
    "[QUESTION_ID]": {
        "label": "[CLASS_LABEL]",  # Currently an integer converted to a string
        "score": float  # Only used for ranking tasks
    },
    ...
}

Each [QUESTION_ID] is an ID for a test example in a few-shot problem.

[Optional] Parallelizing Evaluation

Two options are available for parallelizing evaluation.

First, one can restrict evaluation to a subset of tasks with indices from [START] to [STOP] (exclusive) via

evaluator.save_model_predictions(model=model, start_task_index=[START], stop_task_index=[STOP])

Notes:

  • You may use stop_task_index=None (or omit it) to avoid specifying an end.
  • You can find the total number of tasks in the challenge with fewshot.get_challenge_spec([CHALLENGE]).num_tasks.
  • To merge partial evaluation outputs into a complete predictions.json file, use fewshot merge partial1.json partial2.json ... predictions.json.

The second option will call your model's .fit_and_predict() method with batches of [BATCH_SIZE] tasks, via

evaluator.save_model_predictions(model=model, batched=True, batch_size=[BATCH_SIZE])

Result Validation and Scoring

To validate the contents of your predictions, run:

fewshot validate --challenge_name flex --predictions /path/to/predictions.json

This validates all the inputs and takes some time. Substitute flex for another challenge to evaluate on a different challenge.

(There is also a score CLI command which should not be used on the final challenge except when reporting final results.)

Model Training

For the meta-training protocol (e.g., the FLEX-META leaderboard), challenges come with a set of related training and validation data. This data is most easily accessible in one of two formats:

  1. Iterable from sampled episodes. fewshot.get_challenge_spec('flex').get_sampler(split='[SPLIT]') returns an iterable that samples datasets and episodes from meta-training or meta-validation datasets, via [SPLIT]='train' or [SPLIT]='val', respectively. The sampler defaults to the fewshot.samplers.Sample2WayMax8ShotCfg sampler configuration (for the fewshot.samplers.sample.Sampler class), but can be reconfigured.

  2. Raw dataset stores. This option is for directly accessing the raw data. fewshot.get_challenge_spec('flex').get_stores(split='[SPLIT']) returns a mapping from dataset names to fewshot.datasets.store.Store instances. Each Store instance has a Store.store attribute containing a raw HuggingFace Dataset instance. The Store instance has a Store.label attribute with the Dataset object key for accessing the target label (e.g., via Store.store[Store.label]) and the FLEX-formatted text available at the flex.txt key (e.g., via Store.store['flex.txt']).

Two examples of these respective approaches are available at:

  1. The UniFew model repository. For more details on Unifew, see also the FLEX Arxiv paper.
  2. The baselines/bao/ directory, for training and evaluating the approach described in the following paper:

Yujia Bao*, Menghua Wu*, Shiyu Chang, and Regina Barzilay. Few-shot Text Classification with Distributional Signatures. In International Conference on Learning Representations 2020

Benchmark Construction and Optimization

To add a new benchmark (challenge) named [NEW_CHALLENGE], you must edit fewshot/challenges/__init__.py or otherwise add it to the registry. The above usage instructions would change to substitute [NEW_CHALLENGE] in place of flex when calling fewshot.get_challenge_spec('[NEW_CHALLENGE]') and fewshot.make_challenge('[NEW_CHALLENGE]').

For an example of how to optimize the sample size of the challenge, see scripts/README-sample-size.md.

Attribution

If you make use of our framework, benchmark, or model, please cite our preprint:

@misc{bragg2021flex,
      title={FLEX: Unifying Evaluation for Few-Shot NLP},
      author={Jonathan Bragg and Arman Cohan and Kyle Lo and Iz Beltagy},
      year={2021},
      eprint={2107.07170},
      archivePrefix={arXiv},
      primaryClass={cs.CL}
}
We will release the code of "ConTNet: Why not use convolution and transformer at the same time?" in this repo

ConTNet Introduction ConTNet (Convlution-Tranformer Network) is proposed mainly in response to the following two issues: (1) ConvNets lack a large rec

93 Nov 08, 2022
The source codes for ACL 2021 paper 'BoB: BERT Over BERT for Training Persona-based Dialogue Models from Limited Personalized Data'

BoB: BERT Over BERT for Training Persona-based Dialogue Models from Limited Personalized Data This repository provides the implementation details for

124 Dec 27, 2022
Problem-943.-ACMP - Problem 943. ACMP

Problem-943.-ACMP В "main.py" расположен вариант моего решения задачи 943 с серв

Konstantin Dyomshin 2 Aug 19, 2022
Generic U-Net Tensorflow implementation for image segmentation

Tensorflow Unet Warning This project is discontinued in favour of a Tensorflow 2 compatible reimplementation of this project found under https://githu

Joel Akeret 1.8k Dec 10, 2022
Reinforcement Learning for the Blackjack

Reinforcement Learning for Blackjack Author: ZHA Mengyue Math Department of HKUST Problem Statement We study playing Blackjack by reinforcement learni

Dolores 3 Jan 24, 2022
Reusable constraint types to use with typing.Annotated

annotated-types PEP-593 added typing.Annotated as a way of adding context-specific metadata to existing types, and specifies that Annotated[T, x] shou

125 Dec 26, 2022
The Unreasonable Effectiveness of Random Pruning: Return of the Most Naive Baseline for Sparse Training

[ICLR 2022] The Unreasonable Effectiveness of Random Pruning: Return of the Most Naive Baseline for Sparse Training The Unreasonable Effectiveness of

VITA 44 Dec 23, 2022
This is the repository for Learning to Generate Piano Music With Sustain Pedals

SusPedal-Gen This is the official repository of Learning to Generate Piano Music With Sustain Pedals Demo Page Dataset The dataset used in this projec

Joann Ching 12 Sep 02, 2022
Code for the ECCV2020 paper "A Differentiable Recurrent Surface for Asynchronous Event-Based Data"

A Differentiable Recurrent Surface for Asynchronous Event-Based Data Code for the ECCV2020 paper "A Differentiable Recurrent Surface for Asynchronous

Marco Cannici 21 Oct 05, 2022
Fully Automatic Page Turning on Real Scores

Fully Automatic Page Turning on Real Scores This repository contains the corresponding code for our extended abstract Henkel F., Schwaiger S. and Widm

Florian Henkel 7 Jan 02, 2022
Dynamic Neural Representational Decoders for High-Resolution Semantic Segmentation

Dynamic Neural Representational Decoders for High-Resolution Semantic Segmentation Requirements This repository needs mmsegmentation Training To train

20 May 28, 2022
AI virtual gym is an AI program which can be used to exercise and can be used to see if we are doing the exercises

AI virtual gym is an AI program which can be used to exercise and can be used to see if we are doing the exercises

4 Feb 13, 2022
This repository contains the source code for the paper Tutorial on amortized optimization for learning to optimize over continuous domains by Brandon Amos

Tutorial on Amortized Optimization This repository contains the source code for the paper Tutorial on amortized optimization for learning to optimize

Meta Research 144 Dec 26, 2022
A study project using the AA-RMVSNet to reconstruct buildings from multiple images

3d-building-reconstruction This is part of a study project using the AA-RMVSNet to reconstruct buildings from multiple images. Introduction It is exci

17 Oct 17, 2022
TensorFlow implementation of Elastic Weight Consolidation

Elastic weight consolidation Introduction A TensorFlow implementation of elastic weight consolidation as presented in Overcoming catastrophic forgetti

James Stokes 67 Oct 11, 2022
Mscp jamf - Build compliance in jamf

mscp_jamf Build compliance in Jamf. This will build the following xml pieces to

Bob Gendler 3 Jul 25, 2022
Official codebase for "B-Pref: Benchmarking Preference-BasedReinforcement Learning" contains scripts to reproduce experiments.

B-Pref Official codebase for B-Pref: Benchmarking Preference-BasedReinforcement Learning contains scripts to reproduce experiments. Install conda env

48 Dec 20, 2022
Official code of CVPR 2021's PLOP: Learning without Forgetting for Continual Semantic Segmentation

PLOP: Learning without Forgetting for Continual Semantic Segmentation This repository contains all of our code. It is a modified version of Cermelli e

Arthur Douillard 116 Dec 14, 2022
CCNet: Criss-Cross Attention for Semantic Segmentation (TPAMI 2020 & ICCV 2019).

CCNet: Criss-Cross Attention for Semantic Segmentation Paper Links: Our most recent TPAMI version with improvements and extensions (Earlier ICCV versi

Zilong Huang 1.3k Dec 27, 2022
Tools for manipulating UVs in the Blender viewport.

UV Tool Suite for Blender A set of tools to make editing UVs easier in Blender. These tools can be accessed wither through the Kitfox - UV panel on th

35 Oct 29, 2022