DC3: A Learning Method for Optimization with Hard Constraints

Related tags

Deep LearningDC3
Overview

DC3: A learning method for optimization with hard constraints

This repository is by Priya L. Donti, David Rolnick, and J. Zico Kolter and contains the PyTorch source code to reproduce the experiments in our paper "DC3: A learning method for optimization with hard constraints."

If you find this repository helpful in your publications, please consider citing our paper.

@inproceedings{donti2021dc3,
  title={DC3: A learning method for optimization with hard constraints},
  author={Donti, Priya and Rolnick, David and Kolter, J Zico},
  booktitle={International Conference on Learning Representations},
  year={2021}
}

Introduction

Large optimization problems with hard constraints arise in many settings, yet classical solvers are often prohibitively slow, motivating the use of deep networks as cheap "approximate solvers." Unfortunately, naive deep learning approaches typically cannot enforce the hard constraints of such problems, leading to infeasible solutions. In this work, we present Deep Constraint Completion and Correction (DC3), an algorithm to address this challenge. Specifically, this method enforces feasibility via a differentiable procedure, which implicitly completes partial solutions to satisfy equality constraints and unrolls gradient-based corrections to satisfy inequality constraints. We demonstrate the effectiveness of DC3 in both synthetic optimization tasks and the real-world setting of AC optimal power flow, where hard constraints encode the physics of the electrical grid. In both cases, DC3 achieves near-optimal objective values while preserving feasibility.

Dependencies

  • Python 3.x
  • PyTorch >= 1.8
  • numpy/scipy/pandas
  • osqp: State-of-the-art QP solver
  • qpth: Differentiable QP solver for PyTorch
  • ipopt: Interior point solver
  • pypower: Power flow and optimal power flow solvers
  • argparse: Input argument parsing
  • pickle: Object serialization
  • hashlib: Hash functions (used to generate folder names)
  • setproctitle: Set process titles
  • waitGPU (optional): Intelligently set CUDA_VISIBLE_DEVICES

Instructions

Dataset generation

Datasets for the experiments presented in our paper are available in the datasets folder. These datasets can be generated by running the Python script make_dataset.py within each subfolder (simple, nonconvex, and acopf) corresponding to the different problem types we test.

Running experiments

Our method and baselines can be run using the following Python files:

  • method.py: Our method (DC3)
  • baseline_nn.py: Simple deep learning baseline (NN)
  • baseline_eq_nn.py: Supervised deep learning baseline with completion (Eq. NN)
  • baseline_opt.py: Traditional optimizers (Optimizer)

See each file for relevant flags to set the problem type and method parameters. Notably:

  • --probType: Problem setting to test (simple, nonconvex, or acopf57)
  • --simpleVar, --simpleIneq, simpleEq, simpleEx: If the problem setting is simple, the number of decision variables, inequalities, equalities, and datapoints, respectively.
  • --nonconvexVar, --nonconvexIneq, nonconvexEq, nonconvexEx: If the problem setting is nonconvex, the number of decision variables, inequalities, equalities, and datapoints, respectively.

Reproducing paper experiments

You can reproduce the experiments run in our paper (including baselines and ablations) via the bash script run_expers.sh. For instance, the following commands can be used to run these experiments, 8 jobs at a time:

bash run_expers.sh > commands
cat commands | xargs -n1 -P8 -I{} /bin/sh -c "{}"

The script load_results.py can be run to aggregate these results (both while experiments are running, and after they are done). In particular, this script outputs a summary of results across different replicates of the same experiment (results_summary.dict) and information on how many jobs of each type are running or done (exper_status.dict).

Generating tables

Tables can be generated via the Jupyter notebook ResultsViz.ipynb. This notebook expects the dictionary results_summary.dict as input; the version of this dictionary generated while running the experiments in the paper is available in this repository.

Owner
CMU Locus Lab
Zico Kolter's Research Group
CMU Locus Lab
Python scripts for performing stereo depth estimation using the MobileStereoNet model in ONNX

ONNX-MobileStereoNet Python scripts for performing stereo depth estimation using the MobileStereoNet model in ONNX Stereo depth estimation on the cone

Ibai Gorordo 23 Nov 29, 2022
SeMask: Semantically Masked Transformers for Semantic Segmentation.

SeMask: Semantically Masked Transformers Jitesh Jain, Anukriti Singh, Nikita Orlov, Zilong Huang, Jiachen Li, Steven Walton, Humphrey Shi This repo co

Picsart AI Research (PAIR) 186 Dec 30, 2022
[TPDS'21] COSCO: Container Orchestration using Co-Simulation and Gradient Based Optimization for Fog Computing Environments

COSCO Framework COSCO is an AI based coupled-simulation and container orchestration framework for integrated Edge, Fog and Cloud Computing Environment

imperial-qore 39 Dec 25, 2022
ICSS - Interactive Continual Semantic Segmentation

Presentation This repository contains the code of our paper: Weakly-supervised c

Alteia 9 Jul 23, 2022
Code for the KDD 2021 paper 'Filtration Curves for Graph Representation'

Filtration Curves for Graph Representation This repository provides the code from the KDD'21 paper Filtration Curves for Graph Representation. Depende

Machine Learning and Computational Biology Lab 16 Oct 16, 2022
Code for Blind Image Decomposition (BID) and Blind Image Decomposition network (BIDeN).

arXiv, porject page, paper Blind Image Decomposition (BID) Blind Image Decomposition is a novel task. The task requires separating a superimposed imag

64 Dec 20, 2022
Heart Arrhythmia Classification

This program takes and input of an ECG in European Data Format (EDF) and outputs the classification for heartbeats into normal vs different types of arrhythmia . It uses a deep learning model for cla

4 Nov 02, 2022
PSTR: End-to-End One-Step Person Search With Transformers (CVPR2022)

PSTR (CVPR2022) This code is an official implementation of "PSTR: End-to-End One-Step Person Search With Transformers (CVPR2022)". End-to-end one-step

Jiale Cao 28 Dec 13, 2022
This repository will be a summary and outlook on all our open, medical, AI advancements.

medical by LAION This repository will be a summary and outlook on all our open, medical, AI advancements. See the medical-general channel in the medic

LAION AI 18 Dec 30, 2022
1st place solution to the Satellite Image Change Detection Challenge hosted by SenseTime

1st place solution to the Satellite Image Change Detection Challenge hosted by SenseTime

Lihe Yang 209 Jan 01, 2023
Patch SVDD for Image anomaly detection

Patch SVDD Patch SVDD for Image anomaly detection. Paper: https://arxiv.org/abs/2006.16067 (published in ACCV 2020). Original Code : https://github.co

Hong-Jeongmin 0 Dec 03, 2021
Implementation for the EMNLP 2021 paper "Interactive Machine Comprehension with Dynamic Knowledge Graphs".

Interactive Machine Comprehension with Dynamic Knowledge Graphs Implementation for the EMNLP 2021 paper. Dependencies apt-get -y update apt-get instal

Xingdi (Eric) Yuan 19 Aug 23, 2022
Selfplay In MultiPlayer Environments

This project allows you to train AI agents on custom-built multiplayer environments, through self-play reinforcement learning.

200 Jan 08, 2023
[CVPR2021 Oral] End-to-End Video Instance Segmentation with Transformers

VisTR: End-to-End Video Instance Segmentation with Transformers This is the official implementation of the VisTR paper: Installation We provide instru

Yuqing Wang 687 Jan 07, 2023
Workshop Materials Delivered on 28/02/2022

intro-to-cnn-p1 Repo for hosting workshop materials delivered on 28/02/2022 Questions you will answer in this workshop Learning Objectives What are co

Beginners Machine Learning 5 Feb 28, 2022
Core ML tools contain supporting tools for Core ML model conversion, editing, and validation.

Core ML Tools Use coremltools to convert machine learning models from third-party libraries to the Core ML format. The Python package contains the sup

Apple 3k Jan 08, 2023
This is the official implementation for the paper "(Almost) Free Incentivized Exploration from Decentralized Learning Agents" in NeurIPS 2021.

Observe then Incentivize Experiments This is the code used for the paper "(Almost) Free Incentivized Exploration from Decentralized Learning Agents",

Cong Shen Research Group 0 Mar 08, 2022
A privacy-focused, intelligent security camera system.

Self-Hosted Home Security Camera System A privacy-focused, intelligent security camera system. Features: Multi-camera support w/ minimal configuration

Scott Barnes 175 Jan 01, 2023
Hydra: an Extensible Fuzzing Framework for Finding Semantic Bugs in File Systems

Hydra: An Extensible Fuzzing Framework for Finding Semantic Bugs in File Systems Paper Finding Semantic Bugs in File Systems with an Extensible Fuzzin

gts3.org (<a href=[email protected])"> 129 Dec 15, 2022
AirCode: A Robust Object Encoding Method

AirCode This repo contains source codes for the arXiv preprint "AirCode: A Robust Object Encoding Method" Demo Object matching comparison when the obj

Chen Wang 30 Dec 09, 2022