Official code for "End-to-End Optimization of Scene Layout" -- including VAE, Diff Render, SPADE for colorization (CVPR 2020 Oral)

Overview

End-to-End Optimization of Scene Layout

Teaser Image Code release for: End-to-End Optimization of Scene Layout CVPR 2020 (Oral)

Project site, Bibtex

For help contact afluo [a.t] andrew.cmu.edu or open an issue

  • Requirements

    • Pytorch 1.2 (for everything)
    • Neural 3D Mesh Renderer - daniilidis version (for scene refinement only) For numerical stability, please modify projection.py to remove the multiplication by 0. After the change L33, L34 looks like:
    x__ = x_
    y__ = y_ 
    
    • Blender 2.79 (for 3D rendering of rooms only)
      • Please install numpy in Blender
    • matplotlib
    • numpy
    • skimage (for SPADE based shading)
    • imageio (for SPADE based shading)
    • shapely (eval only)
    • PyWavefront (for scene refinement only, loading of 3d meshes)
    • PyMesh (for scene refnement only, remeshing of SUNCG objects)
    • 1 Nvidia GPU

Download checkpoints here, download metadata here

Project structure
|-3d_SLN
  |-data
    |-suncg_dataset.py
      # Actual definition for the dataset object, makes batches of scene graphs
  |-metadata
    # SUNCG meta data goes here
    |-30_size_info_many.json
      # data about object size/volume, for 30/70 cutoff
    |-data_rot_train.json
      # Normalized object positions & rotations for training
    |-data_rot_val.json
      # For testing
    |-size_info_many.json
      # data about object size/volume, different cutoff
    |-valid_types.json
      # What object types we should use for making the scene graph
      # Caution when editing this, quite a bit is hard coded elsewhere
  |-models
    |-diff_render.py
      # Uses the Neural Mesh Renderer (Pytorch Version) to refine object positions
    |-graph.py
      # Graph network building blocks
    |-misc.py
      # Misc helper functions for the diff renderer
    |-Sg2ScVAE_model.py
      # Code to construct the VAE-graph network
    |-SPADE_related.py
      # Tools to construct SPADE VAE GAN (inference only)
  |-options
    # Global options
  |-render
    # Contains various "profiles" for Blender rendering
  |-testing
    # You must call batch_gen in test.py at least once
    # It will call into get_layouts_from_network in test_VAE.py
    # this will compute the posterior mean & std and cache it
    |-test_acc_mean_std.py
      # Contains helper functions to measure acc/l1/std 
    |-test_heatmap.py
      # Contains the functions *produce_heatmap* and *plot_heatmap*
      # The first function takes as input a verbally defined scene graph
        # If not provided, it uses a default scene graph with 5 objects
        # It will load weights for a VAE-graph network
        # Then load the computed posterior mean & std
        # And repeatedly sample from the given scene graph
        # Saves the results to a .pkl file
      # The second function will load a .pkl and plot them as heatmaps
    |-test_plot2d.py
      # Contains a function that uses matplotlib
      # Does NOT require SUNCG
      # Plots the objects using colors provided by ScanNet
    |-test_plot3d.py
      # Calls into the blender code in the ../render folder
      # Requires the SUNCG meshes
      # Requires Blender 2.79
      # Either uses the CPU (Blender renderer)
      # Or uses the GPU (Cycles renderer)
      # Loads a HDR texture (from HDRI Haven) for background
    |-test_SPADE_shade.py
      # Loads semantic maps & depth map, and produces RGB images using SPADE
    |-test_utils.py
      # Contains helper functions for testing
        # Of interest is the *get_sg_from_words* function
    |-test_VAE.py
  |-build_dataset_model.py
     # Constructs dataset & dataloader objects
     # Also constructs the VAE-graph network
  |-test.py
     # Provides functions which performs the following:
       # generation of layouts from scene graphs under the *batch_gen* argument
       # measure the accuracy of l1 loss, accuracy, std under the *measure_acc_l1_std* argument
       # draw the topdown heatmaps of layouts with a single scene graph under the *heat_map* argument
       # plot the topdown boxes of layouts with under the *draw_2d* argument
       # plot the viewer centric layouts using suncg meshes under the *draw_3d* argument
       # perform SPADE based shading of semantic+depth maps under the *gan_shade* argument
  |-train.py
     # Contains the training loop for the VAE-graph network
  |-utils.py
     # Contains various helper functions for:
       # managing network losses
       # make scene graphs from bounding boxes
       # load/write jsons
       # misc other stuff
  • Training the VAE-graph network (limited to 1 GPU):
    python train.py

  • Testing the VAE-graph network:
    First run python test.py --batch_gen at least once. This computes and caches a posterior for future sampling using the training set. It also generates a bunch of layouts using the test set.

  • To generate a heatmap:
    python test.py --heat_map
    You can either define your own scene graph (see the produce_heatmap function in testing/test_heatmap.py), if you do not provide one it will use the default one. The function will convert scene graphs defined using words into a format usable by the network.

  • To compute STD/L1/Acc:
    python test.py --measure_acc_l1_std

  • To plot the scene from a top down view with ScanNet colors (doesn't requrie SUNCG):
    python test.py --draw_2d
    Please provide a (O+1 x 6) tensor of bounding boxes, and a (O+1,) tensor of rotations. The last object should be the bounding box of the room

  • To plot 3D
    python test.py --draw_3d
    This calls into test_plot3d.py, which in turn launched Blender, and executes render_caller.py, you can put in specific rooms by editing this file. The full rendering function is located in render_room_color.py.

  • To use a neural renderer to refine a room
    python test.py --fine_tune Please select the indexes of the room in test.py. This will call into test_render_refine.py which uses the differentiable renderer located in diff_render.py. Learning rate, and loss types/weightings can be set in test_render_refine.py.
    We set a manual seed for demonstration purposes, in practice please remove this.

  • To use SPADE to generate texture/shading/lighting for a room from semantic + depth
    python test.py --gan_shade This will first call into semantic_depth_caller.py to produce the semantic and depth maps, then use SPADE to generate RGB images.

Citation

If you find this repo useful for your research, please consider citing the paper

@inproceedings{luo2020end,
  title={End-to-End Optimization of Scene Layout},
  author={Luo, Andrew and Zhang, Zhoutong and Wu, Jiajun and Tenenbaum, Joshua B},
  booktitle={Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition},
  pages={3754--3763},
  year={2020}
}
Owner
Andrew Luo
PhD student @ CMU
Andrew Luo
buildseg is a building extraction plugin of QGIS based on PaddlePaddle.

buildseg buildseg is a Building Extraction plugin for QGIS based on PaddlePaddle. How to use Download and install QGIS and clone the repo : git clone

39 Dec 09, 2022
This repository contains an overview of important follow-up works based on the original Vision Transformer (ViT) by Google.

This repository contains an overview of important follow-up works based on the original Vision Transformer (ViT) by Google.

75 Dec 02, 2022
Compare neural networks by their feature similarity

PyTorch Model Compare A tiny package to compare two neural networks in PyTorch. There are many ways to compare two neural networks, but one robust and

Anand Krishnamoorthy 181 Jan 04, 2023
Neural-net-from-scratch - A simple Neural Network from scratch in Python using the Pymathrix library

A Simple Neural Network from scratch A Simple Neural Network from scratch in Pyt

Youssef Chafiqui 2 Jan 07, 2022
PyTorch implementation of ShapeConv: Shape-aware Convolutional Layer for RGB-D Indoor Semantic Segmentation.

Shape-aware Convolutional Layer (ShapeConv) PyTorch implementation of ShapeConv: Shape-aware Convolutional Layer for RGB-D Indoor Semantic Segmentatio

Hanchao Leng 82 Dec 29, 2022
Annotated notes and summaries of the TensorFlow white paper, along with SVG figures and links to documentation

TensorFlow White Paper Notes Features Notes broken down section by section, as well as subsection by subsection Relevant links to documentation, resou

Sam Abrahams 437 Oct 09, 2022
NAS-FCOS: Fast Neural Architecture Search for Object Detection (CVPR 2020)

NAS-FCOS: Fast Neural Architecture Search for Object Detection This project hosts the train and inference code with pretrained model for implementing

Ning Wang 180 Dec 06, 2022
In this project, two programs can help you take full agvantage of time on the model training with a remote server

In this project, two programs can help you take full agvantage of time on the model training with a remote server, which can push notification to your phone about the information during model trainin

GrayLee 8 Dec 27, 2022
A program that can analyze videos according to the weights you select

MaskMonitor A program that can analyze videos according to the weights you select 下載 訓練完的 weight檔案 執行 MaskDetection.py 內部可更改 輸入來源(鏡頭, 影片, 圖片) 以及輸出條件(人

Patrick_star 1 Nov 07, 2021
This repo is a C++ version of yolov5_deepsort_tensorrt. Packing all C++ programs into .so files, using Python script to call C++ programs further.

yolov5_deepsort_tensorrt_cpp Introduction This repo is a C++ version of yolov5_deepsort_tensorrt. And packing all C++ programs into .so files, using P

41 Dec 27, 2022
Models, datasets and tools for Facial keypoints detection

Template for Data Science Project This repo aims to give a robust starting point to any Data Science related project. It contains readymade tools setu

girafe.ai 1 Feb 11, 2022
Meta-learning for NLP

Self-Supervised Meta-Learning for Few-Shot Natural Language Classification Tasks Code for training the meta-learning models and fine-tuning on downstr

IESL 43 Nov 08, 2022
Official implementation of NeurIPS'2021 paper TransformerFusion

TransformerFusion: Monocular RGB Scene Reconstruction using Transformers Project Page | Paper | Video TransformerFusion: Monocular RGB Scene Reconstru

Aljaz Bozic 118 Dec 25, 2022
This repository contains the official implementation code of the paper Transformer-based Feature Reconstruction Network for Robust Multimodal Sentiment Analysis

This repository contains the official implementation code of the paper Transformer-based Feature Reconstruction Network for Robust Multimodal Sentiment Analysis, accepted at ACMMM 2021.

Ziqi Yuan 10 Sep 30, 2022
Distributed Asynchronous Hyperparameter Optimization better than HyperOpt.

UltraOpt : Distributed Asynchronous Hyperparameter Optimization better than HyperOpt. UltraOpt is a simple and efficient library to minimize expensive

98 Aug 16, 2022
[ICCV 2021] FaPN: Feature-aligned Pyramid Network for Dense Image Prediction

FaPN: Feature-aligned Pyramid Network for Dense Image Prediction [arXiv] [Project Page] @inproceedings{ huang2021fapn, title={{FaPN}: Feature-alig

Shihua Huang 23 Jul 22, 2022
Exploring Versatile Prior for Human Motion via Motion Frequency Guidance (3DV2021)

Exploring Versatile Prior for Human Motion via Motion Frequency Guidance This is the codebase for video-based human motion reconstruction in human-mot

Jiachen Xu 5 Jul 14, 2022
A python package for generating, analyzing and visualizing building shadows

pybdshadow Introduction pybdshadow is a python package for generating, analyzing and visualizing building shadows from large scale building geographic

Qing Yu 13 Nov 30, 2022
Sequence to Sequence (seq2seq) Recurrent Neural Network (RNN) for Time Series Forecasting

Sequence to Sequence (seq2seq) Recurrent Neural Network (RNN) for Time Series Forecasting Note: You can find here the accompanying seq2seq RNN forecas

Guillaume Chevalier 1k Dec 25, 2022
Pytorch implementation of YOLOX、PPYOLO、PPYOLOv2、FCOS an so on.

简体中文 | English miemiedetection 概述 miemiedetection是女装大佬咩酱基于YOLOX进行二次开发的个人检测库(使用的深度学习框架为pytorch),支持Windows、Linux系统,以女装大佬咩酱的名字命名。miemiedetection是一个不需要安装的

248 Jan 02, 2023