buildseg is a building extraction plugin of QGIS based on PaddlePaddle.

Overview

buildseg

Python 3.8 PaddlePaddle 2.2 QGIS 3.16.11

buildseg is a Building Extraction plugin for QGIS based on PaddlePaddle.

fds

How to use

  1. Download and install QGIS and clone the repo :
git clone [email protected]:geoyee/buildseg.git
  1. Install requirements :

    • Enter the folder and install dependent libraries using OSGeo4W shell (Open As Administrator) :
    cd buildseg
    pip install -r requirements.txt
    • Or open OSGeo4W shell as administrator and enter :
    pip install opencv-python paddlepaddle>=2.2.0 paddleseg --user
  2. Copy folder named buildseg in QGIS configuration folder and choose the plugin from plugin manager in QGIS (If not appeared restart QGIS).

    • You can know this folder from QGIS Setting Menu at the top-left of QGIS UI Settings > User Profiles > Open Active Profile Folder .
    • Go to python/plugins then paste the buildseg folder.
    • Full path should be like : C:\Users\$USER\AppData\Roaming\QGIS\QGIS3\profiles\default\python\plugins\buildseg.
  3. Open QGIS, load your raster and select the parameter file (*.pdiparams) then click ok.

Model and Parameter

Model Backbone Resolution mIoU Params(MB) Inference Time(ms) Links
OCRNet HRNet_W18 512x512 90.64% 46.4 / Static Weight
  • Train/Eval Dataset : Link.
  • We have done all testing and development using : Tesla V100 32G in AI Studio.

TODO

  • Extract building on 512x512 remote sensing images.
  • Extract building on big remote sensing images through splitting it into small tiles, extract buildings then mosaic it back (merge) to a full extent.
  • Replace the model and parameters (large-scale data).
  • Convert to static weight (*.pdiparams) instead of dynamic model (*.pdparams).
  • Add a Jupyter Notebook (*.ipynb) about how to fine-tune parameters using other's datasets based on PaddleSeg.
  • Hole digging inside the polygons.
  • Convert raster to Shapefile/GeoJson by GDAL/OGR (gdal.Polygonize) instead of findContours in OpenCV.
  • Update plugin's UI :
    • Add menu to select one raster file from QGIS opened raster layers.
    • Select the Parameter path one time (some buggy windows appear when importing the *.pdiparams file).
    • Define the output path of the vector file (Direct Path or Temporary in the memory).
    • Add setting about used GPU / block size and overlap size.
  • Accelerate, etc.
  • Add another model, like Vision Transform.
You might also like...
Multi-Modal Machine Learning toolkit based on PaddlePaddle.
Multi-Modal Machine Learning toolkit based on PaddlePaddle.

简体中文 | English PaddleMM 简介 飞桨多模态学习工具包 PaddleMM 旨在于提供模态联合学习和跨模态学习算法模型库,为处理图片文本等多模态数据提供高效的解决方案,助力多模态学习应用落地。 近期更新 2022.1.5 发布 PaddleMM 初始版本 v1.0 特性 丰富的任务

Awesome Remote Sensing Toolkit based on PaddlePaddle.
Awesome Remote Sensing Toolkit based on PaddlePaddle.

基于飞桨框架开发的高性能遥感图像处理开发套件,端到端地完成从训练到部署的全流程遥感深度学习应用。 最新动态 PaddleRS 即将发布alpha版本!欢迎大家试用 简介 PaddleRS是遥感科研院所、相关高校共同基于飞桨开发的遥感处理平台,支持遥感图像分类,目标检测,图像分割,以及变化检测等常用遥

A PaddlePaddle version image model zoo.

Paddle-Image-Models English | 简体中文 A PaddlePaddle version image model zoo. Install Package Install by pip: $ pip install ppim Install by wheel package

Plaything for Autistic Children (demo for PaddlePaddle/Wechaty/Mixlab project)
Plaything for Autistic Children (demo for PaddlePaddle/Wechaty/Mixlab project)

星星的孩子 - 一款为孤独症孩子设计的聊天机器人游戏 孤独症儿童是目前常常被忽视的一类群体。他们有着类似性格内向的特征,实际却受着广泛性发育障碍的折磨。 项目背景 这类儿童在与人交往时存在着沟通障碍,其特点表现在: 社交交流差,互动障碍明显 认知能力有限,被动认知 兴趣狭窄,重复刻板,缺乏变化和想象

Official PaddlePaddle implementation of Paint Transformer
Official PaddlePaddle implementation of Paint Transformer

Paint Transformer: Feed Forward Neural Painting with Stroke Prediction [Paper] [Paddle Implementation] Update We have optimized the serial inference p

An implementation of paper `Real-time Convolutional Neural Networks for Emotion and Gender Classification` with PaddlePaddle.
An implementation of paper `Real-time Convolutional Neural Networks for Emotion and Gender Classification` with PaddlePaddle.

简介 通过PaddlePaddle框架复现了论文 Real-time Convolutional Neural Networks for Emotion and Gender Classification 中提出的两个模型,分别是SimpleCNN和MiniXception。利用 imdb_crop

PaddleViT: State-of-the-art Visual Transformer and MLP Models for PaddlePaddle 2.0+
PaddleViT: State-of-the-art Visual Transformer and MLP Models for PaddlePaddle 2.0+

PaddlePaddle Vision Transformers State-of-the-art Visual Transformer and MLP Models for PaddlePaddle 🤖 PaddlePaddle Visual Transformers (PaddleViT or

🔥🔥High-Performance Face Recognition Library on PaddlePaddle & PyTorch🔥🔥
🔥🔥High-Performance Face Recognition Library on PaddlePaddle & PyTorch🔥🔥

face.evoLVe: High-Performance Face Recognition Library based on PaddlePaddle & PyTorch Evolve to be more comprehensive, effective and efficient for fa

🔥🔥High-Performance Face Recognition Library on PaddlePaddle & PyTorch🔥🔥
🔥🔥High-Performance Face Recognition Library on PaddlePaddle & PyTorch🔥🔥

face.evoLVe: High-Performance Face Recognition Library based on PaddlePaddle & PyTorch Evolve to be more comprehensive, effective and efficient for fa

Comments
  • QGIS crashes in startup of the plugin on Linux/Ubuntu

    QGIS crashes in startup of the plugin on Linux/Ubuntu

    Bug with Linux/Debian/Ubuntu image

    and when installing raspberry bi deps image

    it just crashes when trying to import paddle (in QGIS Python script window) without trying to install the plugin

    Tried on Ubuntu 18.04 and 20.04

    bug solved 
    opened by Youssef-Harby 4
  • Use ONNX

    Use ONNX

    please check this branch, test in Mac OS and update README / README_CN (☑ On mac OS Big Sur+). if you think we should use this branch rather than develop (use onnx instead of paddle), you can argee with the pr. or not, please write your viewpoint. thank you youssef ☺

    opened by geoyee 2
  • Installation Bug Report: Plugin Error while installation

    Installation Bug Report: Plugin Error while installation

    An error occurred during execution of following code: pyplugin_installer.instance().installPlugin('buildseg', stable=False)

    Traceback (most recent call last): File "", line 1, in File "/usr/share/qgis/python/pyplugin_installer/installer.py", line 333, in installPlugin self.processDependencies(plugin["id"]) File "/usr/share/qgis/python/pyplugin_installer/installer.py", line 682, in processDependencies dlg = QgsPluginDependenciesDialog(plugin_id, to_install, to_upgrade, not_found) File "/usr/share/qgis/python/pyplugin_installer/qgsplugindependenciesdialog.py", line 92, in init _make_row(data, i, name) File "/usr/share/qgis/python/pyplugin_installer/qgsplugindependenciesdialog.py", line 63, in _make_row widget.use_stable_version = data['use_stable_version'] KeyError: 'use_stable_version'

    Python version: 3.8.10 (default, Nov 26 2021, 20:14:08) [GCC 9.3.0]

    QGIS version: 3.22.3-Białowieża 'Białowieża', 1628765ec7

    Python path: ['/usr/share/qgis/python', '/home/robotics/.local/share/QGIS/QGIS3/profiles/default/python', '/home/robotics/.local/share/QGIS/QGIS3/profiles/default/python/plugins', '/usr/share/qgis/python/plugins', '/usr/lib/python38.zip', '/usr/lib/python3.8', '/usr/lib/python3.8/lib-dynload', '/home/robotics/.local/lib/python3.8/site-packages', '/usr/local/lib/python3.8/dist-packages', '/usr/lib/python3/dist-packages', '/home/robotics/.local/share/QGIS/QGIS3/profiles/default/python', '/home/robotics/.local/share/QGIS/QGIS3/profiles/default/python/plugins/DeepLearningTools']

    bug solved 
    opened by makamkkumar 2
  • Installation: using QGIS

    Installation: using QGIS "Manage and Install Plugins", or directions in the md file?

    What is better for Installation: using QGIS "Manage and Install Plugins", or following directions in the md file? Using the QGIS installer (3.24.0-Tisler) I get: An error occurred during execution of following code: pyplugin_installer.instance().installPlugin('buildseg', stable=True)

    Traceback (most recent call last): File "", line 1, in File "/usr/share/qgis/python/pyplugin_installer/installer.py", line 333, in installPlugin self.processDependencies(plugin["id"]) File "/usr/share/qgis/python/pyplugin_installer/installer.py", line 682, in processDependencies dlg = QgsPluginDependenciesDialog(plugin_id, to_install, to_upgrade, not_found) File "/usr/share/qgis/python/pyplugin_installer/qgsplugindependenciesdialog.py", line 92, in init _make_row(data, i, name) File "/usr/share/qgis/python/pyplugin_installer/qgsplugindependenciesdialog.py", line 63, in _make_row widget.use_stable_version = data['use_stable_version'] KeyError: 'use_stable_version'

    Python version: 3.9.5 (default, Nov 18 2021, 16:00:48) [GCC 10.3.0]

    QGIS version: 3.24.0-Tisler 'Tisler', 6b44a42058

    Python path: ['/home/alobo/.local/share/QGIS/QGIS3/profiles/default/python/plugins/terminus_processing', '/home/alobo/.local/share/QGIS/QGIS3/profiles/default/python/plugins/LAStools', '/usr/share/qgis/python', '/home/alobo/.local/share/QGIS/QGIS3/profiles/default/python', '/home/alobo/.local/share/QGIS/QGIS3/profiles/default/python/plugins', '/usr/share/qgis/python/plugins', '/home/alobo/OTB/OTB-7.3.0-Linux64/lib/python', '/usr/lib/python39.zip', '/usr/lib/python3.9', '/usr/lib/python3.9/lib-dynload', '/home/alobo/.local/lib/python3.9/site-packages', '/usr/local/lib/python3.9/dist-packages', '/usr/lib/python3/dist-packages', '/usr/lib/python3.9/dist-packages', '/home/alobo/.local/share/QGIS/QGIS3/profiles/default/python', '.', '/home/alobo/.local/lib/python3.9/site-packages/IPython/extensions', '/home/alobo/.local/share/QGIS/QGIS3/profiles/default/python/plugins/enmapboxplugin/site-packages', '/home/alobo/.local/share/QGIS/QGIS3/profiles/default/python/plugins/enmapboxplugin', '/home/alobo/.local/share/QGIS/QGIS3/profiles/default/python/plugins/enmapboxplugin/enmapbox/qgispluginsupport/qps/pyqtgraph', '/home/alobo/.local/share/QGIS/QGIS3/profiles/default/python/plugins/enmapboxplugin/enmapbox/site-packages', '/home/alobo/.local/share/QGIS/QGIS3/profiles/default/python/plugins/enmapboxplugin/enmapbox/apps', '/home/alobo/.local/share/QGIS/QGIS3/profiles/default/python/plugins/enmapboxplugin/enmapbox/coreapps']

    bug 
    opened by aloboa 3
Releases(v0.3.1)
SE3 Pose Interp - Interpolate camera pose or trajectory in SE3, pose interpolation, trajectory interpolation

SE3 Pose Interpolation Pose estimated from SLAM system are always discrete, and

Ran Cheng 4 Dec 15, 2022
Dataset Cartography: Mapping and Diagnosing Datasets with Training Dynamics

Dataset Cartography Code for the paper Dataset Cartography: Mapping and Diagnosing Datasets with Training Dynamics at EMNLP 2020. This repository cont

AI2 125 Dec 22, 2022
Code for SentiBERT: A Transferable Transformer-Based Architecture for Compositional Sentiment Semantics (ACL'2020).

SentiBERT Code for SentiBERT: A Transferable Transformer-Based Architecture for Compositional Sentiment Semantics (ACL'2020). https://arxiv.org/abs/20

Da Yin 66 Aug 13, 2022
CR-Fill: Generative Image Inpainting with Auxiliary Contextual Reconstruction. ICCV 2021

crfill Usage | Web App | | Paper | Supplementary Material | More results | code for paper ``CR-Fill: Generative Image Inpainting with Auxiliary Contex

182 Dec 20, 2022
Drone-based Joint Density Map Estimation, Localization and Tracking with Space-Time Multi-Scale Attention Network

DroneCrowd Paper Detection, Tracking, and Counting Meets Drones in Crowds: A Benchmark. Introduction This paper proposes a space-time multi-scale atte

VisDrone 98 Nov 16, 2022
Stochastic gradient descent with model building

Stochastic Model Building (SMB) This repository includes a new fast and robust stochastic optimization algorithm for training deep learning models. Th

S. Ilker Birbil 22 Jan 19, 2022
A tensorflow/keras implementation of StyleGAN to generate images of new Pokemon.

PokeGAN A tensorflow/keras implementation of StyleGAN to generate images of new Pokemon. Dataset The model has been trained on dataset that includes 8

19 Jul 26, 2022
Use AI to generate a optimized stock portfolio

Use AI, Modern Portfolio Theory, and Monte Carlo simulation's to generate a optimized stock portfolio that minimizes risk while maximizing returns. Ho

Greg James 30 Dec 22, 2022
202 Jan 06, 2023
Sarus implementation of classical ML models. The models are implemented using the Keras API of tensorflow 2. Vizualization are implemented and can be seen in tensorboard.

Sarus published models Sarus implementation of classical ML models. The models are implemented using the Keras API of tensorflow 2. Vizualization are

Sarus Technologies 39 Aug 19, 2022
Banglore House Prediction Using Flask Server (Python)

Banglore House Prediction Using Flask Server (Python) 🌐 Links 🌐 📂 Repo In this repository, I've implemented a Machine Learning-based Bangalore Hous

Dhyan Shah 1 Jan 24, 2022
This repository contains the accompanying code for Deep Virtual Markers for Articulated 3D Shapes, ICCV'21

Deep Virtual Markers This repository contains the accompanying code for Deep Virtual Markers for Articulated 3D Shapes, ICCV'21 Getting Started Get sa

KimHyomin 45 Oct 07, 2022
Transformer-XL: Attentive Language Models Beyond a Fixed-Length Context Code in both PyTorch and TensorFlow

Transformer-XL: Attentive Language Models Beyond a Fixed-Length Context This repository contains the code in both PyTorch and TensorFlow for our paper

Zhilin Yang 3.3k Jan 06, 2023
Help you understand Manual and w/ Clutch point while driving.

简体中文 forza_auto_gear forza_auto_gear is a tool for Forza Horizon 5. It will help us understand the best gear shift point using Manual or w/ Clutch in

15 Oct 08, 2022
Symbolic Music Generation with Diffusion Models

Symbolic Music Generation with Diffusion Models Supplementary code release for our work Symbolic Music Generation with Diffusion Models. Installation

Magenta 119 Jan 07, 2023
[CVPR 2021] Semi-Supervised Semantic Segmentation with Cross Pseudo Supervision

TorchSemiSeg [CVPR 2021] Semi-Supervised Semantic Segmentation with Cross Pseudo Supervision by Xiaokang Chen1, Yuhui Yuan2, Gang Zeng1, Jingdong Wang

Chen XiaoKang 387 Jan 08, 2023
🚩🚩🚩

My CTF Challenges 2021 AIS3 Pre-exam / MyFirstCTF Name Category Keywords Difficulty ⒸⓄⓋⒾⒹ-①⑨ (MyFirstCTF Only) Reverse Baby ★ Piano Reverse C#, .NET ★

6 Oct 28, 2021
Tutorial on active learning with the Nvidia Transfer Learning Toolkit (TLT).

Active Learning with the Nvidia TLT Tutorial on active learning with the Nvidia Transfer Learning Toolkit (TLT). In this tutorial, we will show you ho

Lightly 25 Dec 03, 2022
PyTorch implementation of the paper: "Preference-Adaptive Meta-Learning for Cold-Start Recommendation", IJCAI, 2021.

PAML PyTorch implementation of the paper: "Preference-Adaptive Meta-Learning for Cold-Start Recommendation", IJCAI, 2021. (Continuously updating ) Int

15 Nov 18, 2022
Repo for the ACMMM20 submission: "Personalized breath based biometric authentication with wearable multimodality".

personalized-breath Repo for the ACMMM20 submission: "Personalized breath based biometric authentication with wearable multimodality". Guideline To ex

Manh-Ha Bui 2 Nov 15, 2021