Official re-implementation of the Calibrated Adversarial Refinement model described in the paper Calibrated Adversarial Refinement for Stochastic Semantic Segmentation

Overview

Calibrated Adversarial Refinement for Stochastic Semantic Segmentation

Python 3.7 PyTorch 1.4 Apache

Official PyTorch implementation of the Calibrated Adversarial Refinement models described in the paper Calibrated Adversarial Refinement for Stochastic Semantic Segmentation accepted at ICCV2021. An overview of the model architecture is depicted below. We show ambiguous boundary segmentation as a use case, where blue and red pixels in the input image are separable by different vertical boundaries, resulting in multiple valid labels.

image

Results on the stochastic version of the Cityscapes dataset are shown below. The leftmost column illustrates input images overlaid with ground truth labels, the middle section shows 8 randomly sampled predictions from the refinement network, and the final column shows aleatoric uncertainty maps extracted from the calibration network.

image image image

The code reproducing the illustrative toy regression example presented in Section 5.1. of the paper can be found in this repository.

Getting Started

Prerequisites

  • Python3
  • NVIDIA GPU + CUDA CuDNN

This was tested an Ubuntu 18.04 system, on a single 16GB Tesla V100 GPU, but might work on other operating systems as well.

Setup virtual environment

To install the requirements for this code run:

python3 -m venv ~/carsss_venv
source ~/carsss_venv/bin/activate
pip install -r requirements.txt

Directory tree

.
├── data
│   └── datasets
│       ├── lidc
│       └── cityscapes
│ 
├── models
│   ├── discriminators
│   ├── general
│   ├── generators
│   │   └── calibration_nets
│   └── losses
│        
├── results
│        └── output
│        
├── testing
│        
├── training
│        
└── utils

Datasets

For the 1D regression dataset experiments, please refer to this repository. Information on how to obtain the stochastic semantic segmentation datasets can be found below.

Download the LIDC dataset

The pre-processed 180x180 2D crops for the Lung Image Database Consortium (LIDC) image collection dataset (LIDC-IDRI) , as described in A Hierarchical Probabilistic U-Net for Modeling Multi-Scale Ambiguities (2019) and used in this work is made publicly available from Khol et. al, and can be downloaded from (here).

After downloading the dataset, extract each file under ./data/datasets/lidc/. This should give three folders under the said directory named: lidc_crops_test, lidc_crops_train, and lidc_crops_test.

Please note that the official repository of the Hierarchical Probabilistic U-Net , the version of the dataset linked above containts 8843 images for training, 1993 for validation and 1980 for testing rather than 8882, 1996 and 1992 images as used in our experiments, however, the score remains the same.

Download the pre-processed Cityscapes dataset with the black-box predictions

As described in our paper, we integrate our model on top of a black-box segmentation network. We used a pre-trained DeepLabV3+(Xception65+ASPP) model publicly available here . We found that this model obtains a mIoU score of 0.79 on the official test-set of the Cityscapes dataset (Cityscapes).

To get the official 19-class Cityscapes dataset:

  1. Visit the Cityscapes website and create an account
  2. Download the images and annotations
  3. Extract the files and move the folders gtFine and leftImg8bit in a new directory for the raw data i.e. ./data/datasets/cityscapes/raw_data.
  4. Create the 19-class labels by following this issue.
  5. Configure your data directories in ./data/datasets/cityscapes/preprocessing_config.py .
  6. Run ./data/datasets/cityscapes/preprocessing.py to pre-process the data in downscaled numpy arrays and save under ./data/datasets/cityscapes/processed.

Subsequently download the black-box predictions under ./data/datasets/cityscapes/, and extract by running tar -zxvf cityscapes_bb_preds.tar.gz

Finally, move the black-box predictions in the processed cityscapes folder and setup the test set run ./data/datasets/cityscapes/move_bb_preds.py

Train your own models

To train you own model on the LIDC dataset, set LABELS_CHANNELS=2 in line 29 of ./utils/constants.py run:

python main.py --mode train --debug '' --calibration_net SegNetCalNet --z_dim 8 --batch-size 32 --dataset LIDC --class_flip ''

To train you own model using the black-box predictions on the modified Cityscapes dataset, set LABELS_CHANNELS=25 in line 29 of ./utils/constants.py and run:

python main.py --mode train --debug '' --calibration_net ToyCalNet --z_dim 32 --batch-size 16 --dataset CITYSCAPES19 --class_flip True

Launching a run in train mode will create a new directory with the date and time of the start of your run under ./results/output/, where plots documenting the progress of the training and are saved and models are checkpointed. For example, a run launched on 12:00:00 on 1/1/2020 will create a new folder ./results/output/2020-01-01_12:00:00/ . To prevent the creation of this directory, set --debug False in the run command above.

Evaluation

LIDC pre-trained model

A pre-trained model on LIDC can be downloaded from here. To evaluate this model set LABELS_CHANNELS=2, move the downloaded pickle file under ./results/output/LIDC/saved_models/ and run:

python main.py --mode test --test_model_date LIDC --test_model_suffix LIDC_CAR_Model --calibration_net SegNetCalNet --z_dim 8 --dataset LIDC --class_flip ''

Cityscapes pre-trained model

A pre-trained model on the modified Cityscapes dataset can be downloaded from here. To evaluate this model set LABELS_CHANNELS=25 and IMSIZE = (256, 512) in ./utils/constants.py, move the downloaded pickle file under ./results/output/CS/saved_models/ and run:

python main.py --mode test --test_model_date CS --test_model_suffix CS_CAR_Model --calibration_net ToyCalNet --z_dim 32 --dataset CITYSCAPES19 --class_flip True

Citation

If you use this code for your research, please cite our paper Calibrated Adversarial Refinement for Stochastic Semantic Segmentation:

@InProceedings{Kassapis_2021_ICCV,
    author    = {Kassapis, Elias and Dikov, Georgi and Gupta, Deepak K. and Nugteren, Cedric},
    title     = {Calibrated Adversarial Refinement for Stochastic Semantic Segmentation},
    booktitle = {Proceedings of the IEEE/CVF International Conference on Computer Vision (ICCV)},
    month     = {October},
    year      = {2021},
    pages     = {7057-7067}
}

License

The code in this repository is published under the Apache License Version 2.0.

Owner
Elias Kassapis
MSc in Artificial Intelligence from the University of Amsterdam | BSc in Neuroscience from the University of Edinburgh
Elias Kassapis
Joint Gaussian Graphical Model Estimation: A Survey

Joint Gaussian Graphical Model Estimation: A Survey Test Models Fused graphical lasso [1] Group graphical lasso [1] Graphical lasso [1] Doubly joint s

Koyejo Lab 1 Aug 10, 2022
[ACMMM 2021, Oral] Code release for "Elastic Tactile Simulation Towards Tactile-Visual Perception"

EIP: Elastic Interaction of Particles Code release for "Elastic Tactile Simulation Towards Tactile-Visual Perception", in ACMMM (Oral) 2021. By Yikai

Yikai Wang 37 Dec 20, 2022
Real-time LIDAR-based Urban Road and Sidewalk detection for Autonomous Vehicles 🚗

urban_road_filter: a real-time LIDAR-based urban road and sidewalk detection algorithm for autonomous vehicles Dependency ROS (tested with Kinetic and

JKK - Vehicle Industry Research Center 180 Dec 12, 2022
High-fidelity 3D Model Compression based on Key Spheres

High-fidelity 3D Model Compression based on Key Spheres This repository contains the implementation of the paper: Yuanzhan Li, Yuqi Liu, Yujie Lu, Siy

5 Oct 11, 2022
Evaluation toolkit of the informative tracking benchmark comprising 9 scenarios, 180 diverse videos, and new challenges.

Informative-tracking-benchmark Informative tracking benchmark (ITB) higher diversity. It contains 9 representative scenarios and 180 diverse videos. m

Xin Li 15 Nov 26, 2022
A tensorflow implementation of GCN-LPA

GCN-LPA This repository is the implementation of GCN-LPA (arXiv): Unifying Graph Convolutional Neural Networks and Label Propagation Hongwei Wang, Jur

Hongwei Wang 83 Nov 28, 2022
A simple Tensorflow based library for deep and/or denoising AutoEncoder.

libsdae - deep-Autoencoder & denoising autoencoder A simple Tensorflow based library for Deep autoencoder and denoising AE. Library follows sklearn st

Rajarshee Mitra 147 Nov 18, 2022
[NeurIPS'21] Shape As Points: A Differentiable Poisson Solver

Shape As Points (SAP) Paper | Project Page | Short Video (6 min) | Long Video (12 min) This repository contains the implementation of the paper: Shape

394 Dec 30, 2022
PyTorch implementation of the paper Deep Networks from the Principle of Rate Reduction

Deep Networks from the Principle of Rate Reduction This repository is the official PyTorch implementation of the paper Deep Networks from the Principl

459 Dec 27, 2022
Personalized Transfer of User Preferences for Cross-domain Recommendation (PTUPCDR)

Personalized Transfer of User Preferences for Cross-domain Recommendation (PTUPCDR) This is the official implementation of our paper Personalized Tran

Yongchun Zhu 81 Dec 29, 2022
masscan + nmap + Finger

说明 个人根据使用习惯修改masnmap而来的一个小工具。调用masscan做全端口扫描,再调用nmap做服务识别,最后调用Finger做Web指纹识别。工具使用场景适合风险探测排查、众测等。 使用方法 安装依赖 pip3 install -r requirements.txt -i https:/

Ryan 3 Mar 25, 2022
ICCV2021 - A New Journey from SDRTV to HDRTV.

ICCV2021 - A New Journey from SDRTV to HDRTV.

XyChen 82 Dec 27, 2022
A toolset for creating Qualtrics-based IAT experiments

Qualtrics IAT Tool A web app for generating the Implicit Association Test (IAT) running on Qualtrics Online Web App The app is hosted by Streamlit, a

0 Feb 12, 2022
Circuit Training: An open-source framework for generating chip floor plans with distributed deep reinforcement learning

Circuit Training: An open-source framework for generating chip floor plans with distributed deep reinforcement learning. Circuit Training is an open-s

Google Research 479 Dec 25, 2022
UniFormer - official implementation of UniFormer

UniFormer This repo is the official implementation of "Uniformer: Unified Transformer for Efficient Spatiotemporal Representation Learning". It curren

SenseTime X-Lab 573 Jan 04, 2023
CoANet: Connectivity Attention Network for Road Extraction From Satellite Imagery

CoANet: Connectivity Attention Network for Road Extraction From Satellite Imagery This paper (CoANet) has been published in IEEE TIP 2021. This code i

Jie Mei 53 Dec 03, 2022
A GUI for Face Recognition, based upon Docker, Tkinter, GPU and a camera device.

Face Recognition GUI This repository is a GUI version of Face Recognition by Adam Geitgey, where e.g. Docker and Tkinter are utilized. All the materia

Kasper Henriksen 6 Dec 05, 2022
Official code repository for Continual Learning In Environments With Polynomial Mixing Times

Official code for Continual Learning In Environments With Polynomial Mixing Times Continual Learning in Environments with Polynomial Mixing Times This

Sharath Raparthy 1 Dec 19, 2021
Official PyTorch implementation of PS-KD

Self-Knowledge Distillation with Progressive Refinement of Targets (PS-KD) Accepted at ICCV 2021, oral presentation Official PyTorch implementation of

61 Dec 28, 2022
Discriminative Condition-Aware PLDA

DCA-PLDA This repository implements the Discriminative Condition-Aware Backend described in the paper: L. Ferrer, M. McLaren, and N. Brümmer, "A Speak

Luciana Ferrer 31 Aug 05, 2022