Multi-Modal Machine Learning toolkit based on PaddlePaddle.

Related tags

Deep LearningPaddleMM
Overview

简体中文 | English

PaddleMM

简介

飞桨多模态学习工具包 PaddleMM 旨在于提供模态联合学习和跨模态学习算法模型库,为处理图片文本等多模态数据提供高效的解决方案,助力多模态学习应用落地。

近期更新

  • 2022.1.5 发布 PaddleMM 初始版本 v1.0

特性

  • 丰富的任务场景:工具包提供多模态融合、跨模态检索、图文生成等多种多模态学习任务算法模型库,支持用户自定义数据和训练。
  • 成功的落地应用:基于工具包算法已有相关落地应用,如球鞋真伪鉴定、球鞋风格迁移、家具图片自动描述、舆情监控等。

应用展示

  • 球鞋真伪鉴定 (更多信息欢迎访问我们的网站 Ysneaker !)
  • 更多应用

落地实践

  • 与百度人才智库(TIC)合作 智能招聘 简历分析,基于多模态融合算法并成功落地。

框架

PaddleMM 包括以下模块:

  • 数据处理:提供统一的数据接口和多种数据处理格式
  • 模型库:包括多模态融合、跨模态检索、图文生成、多任务算法
  • 训练器:对每种任务设置统一的训练流程和相关指标计算

使用

下载工具包

git clone https://github.com/njustkmg/PaddleMM.git

使用示例:

from paddlemm import PaddleMM

# config: Model running parameters, see configs/
# data_root: Path to dataset
# image_root: Path to images
# gpu: Which gpu to use

runner = PaddleMM(config='configs/cmml.yml',
                  data_root='data/COCO', 
                  image_root='data/COCO/images', 
                  gpu=0)

runner.train()
runner.test()

或者

python run.py --config configs/cmml.yml --data_root data/COCO --image_root data/COCO/images --gpu 0

模型库 (更新中)

[1] Comprehensive Semi-Supervised Multi-Modal Learning

[2] Stacked Cross Attention for Image-Text Matching

[3] Similarity Reasoning and Filtration for Image-Text Matching

[4] Show, Attend and Tell: Neural Image Caption Generation with Visual Attention

[5] Attention on Attention for Image Captioning

[6] VQA: Visual Question Answering

[7] ViLBERT: Pretraining Task-Agnostic Visiolinguistic Representations for Vision-and-Language Tasks

实验结果 (COCO) (更新中)

  • Multimodal fusion
Average_Precision Coverage Example_AUC Macro_AUC Micro_AUC Ranking_Loss
CMML 0.682 18.827 0.948 0.927 0.950 0.052 semi-supervised
Early(add) 0.974 16.681 0.969 0.952 0.968 0.031 VGG+LSTM
Early(add) 0.974 16.532 0.971 0.958 0.972 0.029 ResNet+GRU
Early(concat) 0.797 16.366 0.972 0.959 0.973 0.028 ResNet+LSTM
Early(concat) 0.798 16.541 0.971 0.959 0.972 0.029 ResNet+GRU
Early(concat) 0.795 16.704 0.969 0.952 0.968 0.031 VGG+LSTM
Late(mean) 0.733 17.849 0.959 0.947 0.963 0.041 ResNet+LSTM
Late(mean) 0.734 17.838 0.959 0.945 0.962 0.041 ResNet+GRU
Late(mean) 0.738 17.818 0.960 0.943 0.962 0.040 VGG+LSTM
Late(mean) 0.735 17.938 0.959 0.941 0.959 0.041 VGG+GRU
Late(max) 0.742 17.953 0.959 0.944 0.961 0.041 ResNet+LSTM
Late(max) 0.736 17.955 0.959 0.941 0.961 0.041 ResNet+GRU
Late(max) 0.727 17.949 0.958 0.940 0.959 0.042 VGG+LSTM
Late(max) 0.737 17.983 0.959 0.942 0.959 0.041 VGG+GRU
  • Image caption
Bleu-1 Bleu-2 Bleu-3 Bleu-4 Meteor Rouge Cider
NIC(paper) 71.8 50.3 35.7 25.0 23.0 - -
NIC-VGG(ours) 69.9 52.4 37.9 27.1 23.4 51.4 84.5
NIC-ResNet(ours) 72.8 56.0 41.4 30.1 25.2 53.7 95.9
AoANet-CE(paper) 78.7 - - 38.1 28.4 57.5 119.8
AoANet-CE(ours) 75.1 58.7 44.4 33.2 27.2 55.8 109.3

成果

多模态论文

  • Yang Yang, Chubing Zhang, Yi-Chu Xu, Dianhai Yu, De-Chuan Zhan, Jian Yang. Rethinking Label-Wise Cross-Modal Retrieval from A Semantic Sharing Perspective. Proceedings of the 30th International Joint Conference on Artificial Intelligence (IJCAI-2021), Montreal, Canada, 2021. (CCF-A).
  • Yang Yang, Ke-Tao Wang, De-Chuan Zhan, Hui Xiong, Yuan Jiang. Comprehensive Semi-Supervised Multi-Modal Learning. Proceedings of the 28th International Joint Conference on Artificial Intelligence (IJCAI-2019) , Macao, China, 2019. [Pytorch Code] [Paddle Code]
  • Yang Yang, Yi-Feng Wu, De-Chuan Zhan, Zhi-Bin Liu, Yuan Jiang. Deep Robust Unsupervised Multi-Modal Network. Proceedings of the 33rd AAAI Conference on Artificial Intelligence (AAAI-2019) , Honolulu, Hawaii, 2019.
  • Yang Yang, Yi-Feng Wu, De-Chuan Zhan, Yuan Jiang. Deep Multi-modal Learning with Cascade Consensus. Proceedings of the Pacific Rim International Conference on Artificial Intelligence (PRICAI-2018) , Nanjing, China, 2018.
  • Yang Yang, Yi-Feng Wu, De-Chuan Zhan, Zhi-Bin Liu, Yuan Jiang. Complex Object Classification: A Multi-Modal Multi-Instance Multi-Label Deep Network with Optimal Transport. Proceedings of the Annual Conference on ACM SIGKDD (KDD-2018) , London, UK, 2018. [Code]
  • Yang Yang, De-Chuan Zhan, Xiang-Rong Sheng, Yuan Jiang. Semi-Supervised Multi-Modal Learning with Incomplete Modalities. Proceedings of the 27th International Joint Conference on Artificial Intelligence (IJCAI-2018) , Stockholm, Sweden, 2018.
  • Yang Yang, De-Chuan Zhan, Ying Fan, and Yuan Jiang. Instance Specific Discriminative Modal Pursuit: A Serialized Approach. Proceedings of the 9th Asian Conference on Machine Learning (ACML-2017) , Seoul, Korea, 2017. [Best Paper] [Code]
  • Yang Yang, De-Chuan Zhan, Xiang-Yu Guo, and Yuan Jiang. Modal Consistency based Pre-trained Multi-Model Reuse. Proceedings of the 26th International Joint Conference on Artificial Intelligence (IJCAI-2017) , Melbourne, Australia, 2017.
  • Yang Yang, De-Chuan Zhan, Yin Fan, Yuan Jiang, and Zhi-Hua Zhou. Deep Learning for Fixed Model Reuse. Proceedings of the 31st AAAI Conference on Artificial Intelligence (AAAI-2017), San Francisco, CA. 2017.
  • Yang Yang, De-Chuan Zhan and Yuan Jiang. Learning by Actively Querying Strong Modal Features. Proceedings of the 25th International Joint Conference on Artificial Intelligence (IJCAI-2016), New York, NY. 2016, Page: 1033-1039.
  • Yang Yang, Han-Jia Ye, De-Chuan Zhan and Yuan Jiang. Auxiliary Information Regularized Machine for Multiple Modality Feature Learning. Proceedings of the 24th International Joint Conference on Artificial Intelligence (IJCAI-2015), Buenos Aires, Argentina, 2015, Page: 1033-1039.
  • Yang Yang, De-Chuan Zhan, Yi-Feng Wu, Zhi-Bin Liu, Hui Xiong, and Yuan Jiang. Semi-Supervised Multi-Modal Clustering and Classification with Incomplete Modalities. IEEE Transactions on Knowledge and Data Engineering (IEEE TKDE), 2020. (CCF-A)
  • Yang Yang, Zhao-Yang Fu, De-Chuan Zhan, Zhi-Bin Liu, Yuan Jiang. Semi-Supervised Multi-Modal Multi-Instance Multi-Label Deep Network with Optimal Transport. IEEE Transactions on Knowledge and Data Engineering (IEEE TKDE), 2020. (CCF-A)

更多论文欢迎访问我们的网站 njustlkmg

飞桨论文复现挑战赛

  • 飞桨论文复现挑战赛 (第四期):《Comprehensive Semi-Supervised Multi-Modal Learning》赛题冠军
  • 飞桨论文复现挑战赛 (第五期):《From Recognition to Cognition: Visual Commonsense Reasoning》赛题冠军

贡献

  • 非常感谢百度人才智库(TIC)提供的技术和应用落地支持。
  • 我们非常欢迎您为 PaddleMM 贡献代码,也十分感谢你的反馈。

许可证书

本项目的发布受 Apache 2.0 license 许可认证。

Owner
njustkmg
njustkmg
TransferNet: Learning Transferrable Knowledge for Semantic Segmentation with Deep Convolutional Neural Network

TransferNet: Learning Transferrable Knowledge for Semantic Segmentation with Deep Convolutional Neural Network Created by Seunghoon Hong, Junhyuk Oh,

42 Jun 29, 2022
(CVPR 2022) Energy-based Latent Aligner for Incremental Learning

Energy-based Latent Aligner for Incremental Learning Accepted to CVPR 2022 We illustrate an Incremental Learning model trained on a continuum of tasks

Joseph K J 37 Jan 03, 2023
Official PyTorch Implementation of Embedding Transfer with Label Relaxation for Improved Metric Learning, CVPR 2021

Embedding Transfer with Label Relaxation for Improved Metric Learning Official PyTorch implementation of CVPR 2021 paper Embedding Transfer with Label

Sungyeon Kim 37 Dec 06, 2022
Tf alloc - Simplication of GPU allocation for Tensorflow2

tf_alloc Simpliying GPU allocation for Tensorflow Developer: korkite (Junseo Ko)

Junseo Ko 3 Feb 10, 2022
[CVPR 2021] "Multimodal Motion Prediction with Stacked Transformers": official code implementation and project page.

mmTransformer Introduction This repo is official implementation for mmTransformer in pytorch. Currently, the core code of mmTransformer is implemented

DeciForce: Crossroads of Machine Perception and Autonomy 232 Dec 31, 2022
Implementation of Rotary Embeddings, from the Roformer paper, in Pytorch

Rotary Embeddings - Pytorch A standalone library for adding rotary embeddings to transformers in Pytorch, following its success as relative positional

Phil Wang 110 Dec 30, 2022
Official PyTorch Implementation for InfoSwap: Information Bottleneck Disentanglement for Identity Swapping

InfoSwap: Information Bottleneck Disentanglement for Identity Swapping Code usage Please check out the user manual page. Paper Gege Gao, Huaibo Huang,

Grace Hešeri 56 Dec 20, 2022
Kaggle-titanic - A tutorial for Kaggle's Titanic: Machine Learning from Disaster competition. Demonstrates basic data munging, analysis, and visualization techniques. Shows examples of supervised machine learning techniques.

Kaggle-titanic This is a tutorial in an IPython Notebook for the Kaggle competition, Titanic Machine Learning From Disaster. The goal of this reposito

Andrew Conti 800 Dec 15, 2022
Amazon Forest Computer Vision: Satellite Image tagging code using PyTorch / Keras with lots of PyTorch tricks

Amazon Forest Computer Vision Satellite Image tagging code using PyTorch / Keras Here is a sample of images we had to work with Source: https://www.ka

Mamy Ratsimbazafy 359 Jan 05, 2023
Computations and statistics on manifolds with geometric structures.

Geomstats Code Continuous Integration Code coverage (numpy) Code coverage (autograd, tensorflow, pytorch) Documentation Community NEWS: Geomstats is r

875 Dec 31, 2022
Synthesizing Long-Term 3D Human Motion and Interaction in 3D in CVPR2021

Long-term-Motion-in-3D-Scenes This is an implementation of the CVPR'21 paper "Synthesizing Long-Term 3D Human Motion and Interaction in 3D". Please ch

Jiashun Wang 76 Dec 13, 2022
DIVeR: Deterministic Integration for Volume Rendering

DIVeR: Deterministic Integration for Volume Rendering This repo contains the training and evaluation code for DIVeR. Setup python 3.8 pytorch 1.9.0 py

64 Dec 27, 2022
A custom-designed Spider Robot trained to walk using Deep RL in a PyBullet Simulation

SpiderBot_DeepRL Title: Implementation of Single and Multi-Agent Deep Reinforcement Learning Algorithms for a Walking Spider Robot Authors(s): Arijit

Arijit Dasgupta 9 Jul 28, 2022
This repository is the offical Pytorch implementation of ContextPose: Context Modeling in 3D Human Pose Estimation: A Unified Perspective (CVPR 2021).

Context Modeling in 3D Human Pose Estimation: A Unified Perspective (CVPR 2021) Introduction This repository is the offical Pytorch implementation of

37 Nov 21, 2022
(ICCV 2021 Oral) Re-distributing Biased Pseudo Labels for Semi-supervised Semantic Segmentation: A Baseline Investigation.

DARS Code release for the paper "Re-distributing Biased Pseudo Labels for Semi-supervised Semantic Segmentation: A Baseline Investigation", ICCV 2021

CVMI Lab 58 Jan 01, 2023
Project repo for Learning Category-Specific Mesh Reconstruction from Image Collections

Learning Category-Specific Mesh Reconstruction from Image Collections Angjoo Kanazawa*, Shubham Tulsiani*, Alexei A. Efros, Jitendra Malik University

438 Dec 22, 2022
Gradient-free global optimization algorithm for multidimensional functions based on the low rank tensor train format

ttopt Description Gradient-free global optimization algorithm for multidimensional functions based on the low rank tensor train (TT) format and maximu

5 May 23, 2022
Decentralized Reinforcment Learning: Global Decision-Making via Local Economic Transactions (ICML 2020)

Decentralized Reinforcement Learning This is the code complementing the paper Decentralized Reinforcment Learning: Global Decision-Making via Local Ec

40 Oct 30, 2022
A repository for storing njxzc final exam review material

文档地址,请戳我 👈 👈 👈 ☀️ 1.Reason 大三上期末复习软件工程的时候,发现其他高校在GitHub上开源了他们学校的期末试题,我很受触动。期末

GuJiakai 2 Jan 18, 2022
Text Generation by Learning from Demonstrations

Text Generation by Learning from Demonstrations The README was last updated on March 7, 2021. The repo is based on fairseq (v0.9.?). Paper arXiv Prere

38 Oct 21, 2022