An attempt to map the areas with active conflict in Ukraine using open source twitter data.

Overview

Contributors Forks Stargazers Issues LinkedIn


Logo

Live Action Map (LAM)

An attempt to use open source data on Twitter to map areas with active conflict. Right now it is used for the Ukraine-Russia conflict, but in the future I hope it can be used for all sorts of dangerous situations.
Report Bug · Add Feature · Website Live! · Join Discord!

Table of Contents
  1. About The Project
  2. Getting Started
  3. Usage
  4. Roadmap
  5. Contributing
  6. License

About The Project

There are many twitter accounts posting live tweets about locations with conflicts. However, it is difficult to keep track of the locations especially with multiple different sources pointing out different location every few minutes. To make sure people can stay safe and take care of themselves, I have aggregated all the tweets into a single map that is easily accessible.

This project is a work in progress. I am working on adding more features and improving the map.

Website Link Image

How it works:

  • Tweets are sourced using keywords, hashtags and prepositions, such as the phrase "shooting... near ... location".
  • Tweets can also be sourced from known twitter accounts by passing their usernames.
  • Tweets are parsed with NLP and the location is extracted from the tweet, this however is not perfect so we need to filter locations later on.
  • Some tweets might talk about other countries reactions like "The US.." or "Russia.." or "Moscow..", in that case we remove all the locations that are not in Ukraine.
  • Some tweets might talk about multiple locations like "Shooting near the location and the location". In that case both locations are added to the map. Multiple markers can be added to the same location.
  • Finally we add markers for each tweet.
  • Markers will cluster together when you zoom out.
  • A single marker looks like a red pin on a map.
  • A cluster appears as a circle with a number inside it, the color shifts from green to orange to red depending on the number of markers in the cluster.
  • We are not taking data directly because that may be vulnerable to trolling and spamming.
  • We are using the Twitter v2 API to get the tweets, however it does not support parsing location directly from tweets.

(back to top)

Getting Started

To get a local copy up and running follow these simple example steps.

Prerequisites

  • Python
  • tweepy
  • spaCy
  • folium
  • geopy
  • tqdm
  • geography3 (optional, needed for experimental feature)

Installation

Python

  1. Get a free twitter Bearer Token from developer.twitter.com. Remember to create a new app and get the bearer token.
  2. Clone the repo
    git clone https://github.com/kinshukdua/LiveActionMap.git
  3. Install all prerequisites
    pip install -r requirements.txt
  4. Download en_core_web, for more info see --> explosion/spaCy#4577
     python3 -m spacy download en_core_web_sm
  5. Create a .env file based on the .env.example
    cp .env.example .env
  6. Set the Twitter bearer token to your own in the .env file created in the previous step.

Docker

  1. Get a Twitter Bearer Token
  2. Download the docker-compose.yaml-file
    wget https://raw.githubusercontent.com/kinshukdua/LiveActionMap/main/docker/docker-compose.yaml
  3. Create a .env file based on the .env.example
    wget https://raw.githubusercontent.com/kinshukdua/LiveActionMap/main/.env.example -O .env 
  4. Start the stack
    docker-compose up -d
    

(back to top)

Usage

Simply edit hashtags, prepositions and keywords and run scrape.py.

python scrape.py

(back to top)

Roadmap

  • Add tweet scraping
  • Add map
  • Add map clustering
  • Create a server to host the generated map
  • Add better filtering
  • Add tweet link on map
  • Use NLP to indicate danger level
  • Add misinformation prevention algorithm
  • Multi-language Support
    • Ukranian
    • Russian

See the open issues for a full list of proposed features (and known issues).

(back to top)

Contributing

Contributions are what make the open source community such an amazing place to learn, inspire, and create. Any contributions you make are greatly appreciated.

If you have a suggestion that would make this better, please fork the repo and create a pull request. You can also simply open an issue with the tag "enhancement". Don't forget to give the project a star! Thanks again!

  1. Fork the Project
  2. Create your Feature Branch (git checkout -b feature/AmazingFeature)
  3. Commit your Changes (git commit -m 'Add some AmazingFeature')
  4. Push to the Branch (git push origin feature/AmazingFeature)
  5. Open a Pull Request

(back to top)

License

Distributed under the MIT License. See LICENSE.txt for more information.

(back to top)

Official PyTorch code for ClipBERT, an efficient framework for end-to-end learning on image-text and video-text tasks

Official PyTorch code for ClipBERT, an efficient framework for end-to-end learning on image-text and video-text tasks. It takes raw videos/images + text as inputs, and outputs task predictions. ClipB

Jie Lei 雷杰 612 Jan 04, 2023
Entity Disambiguation as text extraction (ACL 2022)

ExtEnD: Extractive Entity Disambiguation This repository contains the code of ExtEnD: Extractive Entity Disambiguation, a novel approach to Entity Dis

Sapienza NLP group 121 Jan 03, 2023
RIDE automatically creates the package and boilerplate OOP Python node scripts as per your needs

RIDE: ROS IDE RIDE automatically creates the package and boilerplate OOP Python code for nodes as per your needs (RIDE is not an IDE, but even ROS isn

Jash Mota 20 Jul 14, 2022
Speech Recognition Database Management with python

Speech Recognition Database Management The main aim of this project is to recogn

Abhishek Kumar Jha 2 Feb 02, 2022
BROS: A Pre-trained Language Model Focusing on Text and Layout for Better Key Information Extraction from Documents

BROS (BERT Relying On Spatiality) is a pre-trained language model focusing on text and layout for better key information extraction from documents. Given the OCR results of the document image, which

Clova AI Research 94 Dec 30, 2022
Simple GUI where you can enter an article and get a crisp summarized version.

Text-Summarization-using-TextRank-BART Simple GUI where you can enter an article and get a crisp summarized version. How to run: Clone the repo Instal

Rohit P 4 Sep 28, 2022
Unsupervised Language Modeling at scale for robust sentiment classification

** DEPRECATED ** This repo has been deprecated. Please visit Megatron-LM for our up to date Large-scale unsupervised pretraining and finetuning code.

NVIDIA Corporation 1k Nov 17, 2022
Open solution to the Toxic Comment Classification Challenge

Starter code: Kaggle Toxic Comment Classification Challenge More competitions 🎇 Check collection of public projects 🎁 , where you can find multiple

minerva.ml 153 Jun 22, 2022
Reproducing the Linear Multihead Attention introduced in Linformer paper (Linformer: Self-Attention with Linear Complexity)

Linear Multihead Attention (Linformer) PyTorch Implementation of reproducing the Linear Multihead Attention introduced in Linformer paper (Linformer:

Kui Xu 58 Dec 23, 2022
Knowledge Management for Humans using Machine Learning & Tags

HyperTag helps humans intuitively express how they think about their files using tags and machine learning. Represent how you think using tags. Find what you look for using semantic search for your t

Ravn Tech, Inc. 166 Jan 07, 2023
🎐 a python library for doing approximate and phonetic matching of strings.

jellyfish Jellyfish is a python library for doing approximate and phonetic matching of strings. Written by James Turk James Turk 1.8k Dec 21, 2022

A toolkit for document-level event extraction, containing some SOTA model implementations

Document-level Event Extraction via Heterogeneous Graph-based Interaction Model with a Tracker Source code for ACL-IJCNLP 2021 Long paper: Document-le

84 Dec 15, 2022
A text augmentation tool for named entity recognition.

neraug This python library helps you with augmenting text data for named entity recognition. Augmentation Example Reference from An Analysis of Simple

Hiroki Nakayama 48 Oct 11, 2022
Code for the paper "A Simple but Tough-to-Beat Baseline for Sentence Embeddings".

Code for the paper "A Simple but Tough-to-Beat Baseline for Sentence Embeddings".

1.1k Dec 27, 2022
All the code I wrote for Overwatch-related projects that I still own the rights to.

overwatch_shit.zip This is (eventually) going to contain all the software I wrote during my five-year imprisonment stay playing Overwatch. I'll be add

zkxjzmswkwl 2 Dec 31, 2021
Help you discover excellent English projects and get rid of disturbing by other spoken language

GitHub English Top Charts 「Help you discover excellent English projects and get

GrowingGit 544 Jan 09, 2023
MHtyper is an end-to-end pipeline for recognized the Forensic microhaplotypes in Nanopore sequencing data.

MHtyper is an end-to-end pipeline for recognized the Forensic microhaplotypes in Nanopore sequencing data. It is implemented using Python.

willow 6 Jun 27, 2022
Chinese real time voice cloning (VC) and Chinese text to speech (TTS).

Chinese real time voice cloning (VC) and Chinese text to speech (TTS). 好用的中文语音克隆兼中文语音合成系统,包含语音编码器、语音合成器、声码器和可视化模块。

Kuang Dada 6 Nov 08, 2022
A paper list for aspect based sentiment analysis.

Aspect-Based-Sentiment-Analysis A paper list for aspect based sentiment analysis. Survey [IEEE-TAC-20]: Issues and Challenges of Aspect-based Sentimen

jiangqn 419 Dec 20, 2022
ChainKnowledgeGraph, 产业链知识图谱包括A股上市公司、行业和产品共3类实体

ChainKnowledgeGraph, 产业链知识图谱包括A股上市公司、行业和产品共3类实体,包括上市公司所属行业关系、行业上级关系、产品上游原材料关系、产品下游产品关系、公司主营产品、产品小类共6大类。 上市公司4,654家,行业511个,产品95,559条、上游材料56,824条,上级行业480条,下游产品390条,产品小类52,937条,所属行业3,946条。

liuhuanyong 415 Jan 06, 2023