Python package for performing Entity and Text Matching using Deep Learning.

Overview

DeepMatcher

https://travis-ci.org/anhaidgroup/deepmatcher.svg?branch=master

DeepMatcher is a Python package for performing entity and text matching using deep learning. It provides built-in neural networks and utilities that enable you to train and apply state-of-the-art deep learning models for entity matching in less than 10 lines of code. The models are also easily customizable - the modular design allows any subcomponent to be altered or swapped out for a custom implementation.

As an example, given labeled tuple pairs such as the following:

https://raw.githubusercontent.com/anhaidgroup/deepmatcher/master/docs/source/_static/match_input_ex.png

DeepMatcher uses labeled tuple pairs and trains a neural network to perform matching, i.e., to predict match / non-match labels. The trained network can then be used to obtain labels for unlabeled tuple pairs.

Paper and Data

For details on the architecture of the models used, take a look at our paper Deep Learning for Entity Matching (SIGMOD '18). All public datasets used in the paper can be downloaded from the datasets page.

Quick Start: DeepMatcher in 30 seconds

There are four main steps in using DeepMatcher:

  1. Data processing: Load and process labeled training, validation and test CSV data.
import deepmatcher as dm
train, validation, test = dm.data.process(path='data_directory',
    train='train.csv', validation='validation.csv', test='test.csv')
  1. Model definition: Specify neural network architecture. Uses the built-in hybrid model (as discussed in section 4.4 of our paper) by default. Can be customized to your heart's desire.
model = dm.MatchingModel()
  1. Model training: Train neural network.
model.run_train(train, validation, best_save_path='best_model.pth')
  1. Application: Evaluate model on test set and apply to unlabeled data.
model.run_eval(test)

unlabeled = dm.data.process_unlabeled(path='data_directory/unlabeled.csv', trained_model=model)
model.run_prediction(unlabeled)

Installation

We currently support only Python versions 3.5 and 3.6. Installing using pip is recommended:

pip install deepmatcher

Note that during installation you may see an error message that says "Failed building wheel for fasttextmirror". You can safely ignore this - it does NOT mean that there are any problems with installation.

Tutorials

Using DeepMatcher:

  1. Getting Started: A more in-depth guide to help you get familiar with the basics of using DeepMatcher.
  2. Data Processing: Advanced guide on what data processing involves and how to customize it.
  3. Matching Models: Advanced guide on neural network architecture for entity matching and how to customize it.

Entity Matching Workflow:

End to End Entity Matching: A guide to develop a complete entity matching workflow. The tutorial discusses how to use DeepMatcher with Magellan to perform blocking, sampling, labeling and matching to obtain matching tuple pairs from two tables.

DeepMatcher for other matching tasks:

Question Answering with DeepMatcher: A tutorial on how to use DeepMatcher for question answering. Specifically, we will look at WikiQA, a benchmark dataset for the task of Answer Selection.

API Reference

API docs are here.

Support

Take a look at the FAQ for common issues. If you run into any issues or have questions not answered in the FAQ, please file GitHub issues and we will address them asap.

The Team

DeepMatcher was developed by University of Wisconsin-Madison grad students Sidharth Mudgal and Han Li, under the supervision of Prof. AnHai Doan and Prof. Theodoros Rekatsinas.

Minimal GUI for accessing the Watson Text to Speech service.

Description Minimal graphical application for accessing the Watson Text to Speech service. Requirements Python 3 plus all dependencies listed in requi

Moritz Maxeiner 1 Oct 22, 2021
ChessCoach is a neural network-based chess engine capable of natural-language commentary.

ChessCoach is a neural network-based chess engine capable of natural-language commentary.

Chris Butner 380 Dec 03, 2022
xFormers is a modular and field agnostic library to flexibly generate transformer architectures by interoperable and optimized building blocks.

Description xFormers is a modular and field agnostic library to flexibly generate transformer architectures by interoperable and optimized building bl

Facebook Research 2.3k Jan 08, 2023
AMUSE - financial summarization

AMUSE AMUSE - financial summarization Unzip data.zip Train new model: python FinAnalyze.py --task train --start 0 --count how many files,-1 for all

1 Jan 11, 2022
An easier way to build neural search on the cloud

An easier way to build neural search on the cloud Jina is a deep learning-powered search framework for building cross-/multi-modal search systems (e.g

Jina AI 17.1k Jan 09, 2023
Beta Distribution Guided Aspect-aware Graph for Aspect Category Sentiment Analysis with Affective Knowledge. Proceedings of EMNLP 2021

AAGCN-ACSA EMNLP 2021 Introduction This repository was used in our paper: Beta Distribution Guided Aspect-aware Graph for Aspect Category Sentiment An

Akuchi 36 Dec 18, 2022
Datasets of Automatic Keyphrase Extraction

This repository contains 20 annotated datasets of Automatic Keyphrase Extraction made available by the research community. Following are the datasets and the original papers that proposed them. If yo

LIAAD - Laboratory of Artificial Intelligence and Decision Support 163 Dec 23, 2022
This code is the implementation of Text Emotion Recognition (TER) with linguistic features

APSIPA-TER This code is the implementation of Text Emotion Recognition (TER) with linguistic features. The network model is BERT with a pretrained mod

kenro515 1 Feb 08, 2022
Transfer Learning from Speaker Verification to Multispeaker Text-To-Speech Synthesis (SV2TTS)

This repository is an implementation of Transfer Learning from Speaker Verification to Multispeaker Text-To-Speech Synthesis (SV2TTS) with a vocoder that works in real-time. Feel free to check my the

Corentin Jemine 38.5k Jan 03, 2023
Codename generator using WordNet parts of speech database

codenames Codename generator using WordNet parts of speech database References: https://possiblywrong.wordpress.com/2021/09/13/code-name-generator/ ht

possiblywrong 27 Oct 30, 2022
Almost State-of-the-art Text Generation library

Ps: we are adding transformer model soon Text Gen 🐐 Almost State-of-the-art Text Generation library Text gen is a python library that allow you build

Emeka boris ama 63 Jun 24, 2022
spaCy plugin for Transformers , Udify, ELmo, etc.

Camphr - spaCy plugin for Transformers, Udify, Elmo, etc. Camphr is a Natural Language Processing library that helps in seamless integration for a wid

342 Nov 21, 2022
原神抽卡记录数据集-Genshin Impact gacha data

提要 持续收集原神抽卡记录中 可以使用抽卡记录导出工具导出抽卡记录的json,将json文件发送至[email protected],我会在清除个人信息后

117 Dec 27, 2022
Words-per-minute - A terminal app written in python utilizing the curses module that tests the user's ability to type

words-per-minute A terminal app written in python utilizing the curses module th

Tanim Islam 1 Jan 14, 2022
Compute distance between sequences. 30+ algorithms, pure python implementation, common interface, optional external libs usage.

TextDistance TextDistance -- python library for comparing distance between two or more sequences by many algorithms. Features: 30+ algorithms Pure pyt

Life4 3k Jan 06, 2023
Python port of Google's libphonenumber

phonenumbers Python Library This is a Python port of Google's libphonenumber library It supports Python 2.5-2.7 and Python 3.x (in the same codebase,

David Drysdale 3.1k Dec 29, 2022
Th2En & Th2Zh: The large-scale datasets for Thai text cross-lingual summarization

Th2En & Th2Zh: The large-scale datasets for Thai text cross-lingual summarization 📥 Download Datasets 📥 Download Trained Models INTRODUCTION TH2ZH (

Nakhun Chumpolsathien 5 Jan 03, 2022
Continuously update some NLP practice based on different tasks.

NLP_practice We will continuously update some NLP practice based on different tasks. prerequisites Software pytorch = 1.10 torchtext = 0.11.0 sklear

0 Jan 05, 2022
TunBERT is the first release of a pre-trained BERT model for the Tunisian dialect using a Tunisian Common-Crawl-based dataset.

TunBERT is the first release of a pre-trained BERT model for the Tunisian dialect using a Tunisian Common-Crawl-based dataset. TunBERT was applied to three NLP downstream tasks: Sentiment Analysis (S

InstaDeep Ltd 72 Dec 09, 2022
Implementation of Token Shift GPT - An autoregressive model that solely relies on shifting the sequence space for mixing

Token Shift GPT Implementation of Token Shift GPT - An autoregressive model that relies solely on shifting along the sequence dimension and feedforwar

Phil Wang 32 Oct 14, 2022