Proposed n-stage Latent Dirichlet Allocation method - A Novel Approach for LDA

Overview

n-stage Latent Dirichlet Allocation (n-LDA)

Proposed n-LDA & A Novel Approach for classical LDA

Latent Dirichlet Allocation (LDA) is a generative probabilistic topic model for a given text collection. Topics have a probability distribution over words and text documents over topics. Each subject has a probability distribution over the fixed word corpus [1]. The method exemplifies a mix of these topics for each document. Then, a model is produced by sampling words from this mixture [2].

The coherence value, which is the topic modeling criterion, is used to determine the number of K topic in the system. The coherence value calculates the closeness of words to each other. The topic value of the highest one among the calculated consistency values is chosen as the topic number of the system [3].

After modeling the system with classical LDA, an LDA-based n-stage method is proposed to increase the success of the model. The value of n in the method may vary according to the size of the dataset. With the method, it is aimed to delete the words in the corpus that negatively affect the success. Thus, with the increase in the weight values of the words in the topics formed with the remaining words, the class labels of the topics can be determined more easily [4].

image

The steps of the method are shown in above Figure. In order to reduce the number of words in the dictionary, the threshold value for each topic is calculated. The threshold value is obtained by dividing the sum of the weights of all the words to the word count in the relevant topic. Words with a weight less than the specified threshold value are deleted from the topics and a new dictionary is created for the model. Finally, the system is re-modeled using the LDA algorithm with the new dictionary. These steps can be repeated n times [4].

This method was applied for Turkish and English language. n-stage LDA method was better than classic LDA according to related studies.

Related papers & articles for n-stage LDA

!!! Please citation first paper:

@inproceedings{guven2019comparison,
  title={Comparison of Topic Modeling Methods for Type Detection of Turkish News},
  author={G{\"u}ven, Zekeriya Anil and Diri, Banu and {\c{C}}akalo{\u{g}}lu, Tolgahan},
  booktitle={2019 4th International Conference on Computer Science and Engineering (UBMK)},
  pages={150--154},
  year={2019},
  organization={IEEE}
  doi={10.1109/UBMK.2019.8907050}
}

1-Guven, Z. A., Diri, B., & Cakaloglu, T. (2018, October). Classification of New Titles by Two Stage Latent Dirichlet Allocation. In 2018 Innovations in Intelligent Systems and Applications Conference (ASYU) (pp. 1-5). Ieee.

2-Guven, Z. A., Diri, B., & Cakaloglu, T. (2021). Evaluation of Non-Negative Matrix Factorization and n-stage Latent Dirichlet Allocation for Emotion Analysis in Turkish Tweets. arXiv preprint arXiv:2110.00418.

3-Güven, Z. A., Diri, B., & Çakaloğlu, T. (2020). Comparison of n-stage Latent Dirichlet Allocation versus other topic modeling methods for emotion analysis. Journal of the Faculty of Engineering and Architecture of Gazi University, 35(4), 2135-2146.

4-Güven, Z. A., Diri, B., & Çakaloğlu, T. (2018, April). Classification of TurkishTweet emotions by n-stage Latent Dirichlet Allocation. In 2018 Electric Electronics, Computer Science, Biomedical Engineerings' Meeting (EBBT) (pp. 1-4). IEEE.

5-Güven, Z. A., Diri, B., & Çakaloğlu, T. (2019, September). Comparison of Topic Modeling Methods for Type Detection of Turkish News. In 2019 4th International Conference on Computer Science and Engineering (UBMK) (pp. 150-154). IEEE.

6-GÜVEN, Z. A., Banu, D. İ. R. İ., & ÇAKALOĞLU, T. (2019). Emotion Detection with n-stage Latent Dirichlet Allocation for Turkish Tweets. Academic Platform Journal of Engineering and Science, 7(3), 467-472.

7-Güven, Z. A., Diri, B., & Çakaloğlu, T. Comparison Method for Emotion Detection of Twitter Users. In 2019 Innovations in Intelligent Systems and Applications Conference (ASYU) (pp. 1-5). IEEE.

References

[1] David M. Blei, Andrew Y. Ng, and Michael I. Jordan. Latent Dirichlet allocation.Journal of Machine LearningResearch, 2003. ISSN 15324435. doi:10.1016/b978-0-12-411519-4.00006-9.

[2] Yong Chen, Hui Zhang, Rui Liu, Zhiwen Ye, and Jianying Lin.Experimental explorations on short texttopic mining between LDA and NMF based Schemes.Knowledge-Based Systems, 2019. ISSN 09507051.doi:10.1016/j.knosys.2018.08.011.

[3] Zekeriya Anil Güven, Banu Diri, and Tolgahan Çakaloˇglu. Classification of New Titles by Two Stage Latent DirichletAllocation. InProceedings - 2018 Innovations in Intelligent Systems and Applications Conference, ASYU 2018, 2018.ISBN 9781538677865. doi:10.1109/ASYU.2018.8554027.

[4] Guven, Zekeriya Anil, Banu Diri, and Tolgahan Cakaloglu. "Evaluation of Non-Negative Matrix Factorization and n-stage Latent Dirichlet Allocation for Emotion Analysis in Turkish Tweets." arXiv preprint arXiv:2110.00418 (2021).

Owner
Anıl Güven
Anıl Güven
⚖️🔁🔮🕵️‍♂️🦹🖼️ Code for *Measuring the Contribution of Multiple Model Representations in Detecting Adversarial Instances* paper.

Measuring the Contribution of Multiple Model Representations in Detecting Adversarial Instances This repository contains the code for Measuring the Co

Daniel Steinberg 0 Nov 06, 2022
Super Pix Adv - Offical implemention of Robust Superpixel-Guided Attentional Adversarial Attack (CVPR2020)

Super_Pix_Adv Offical implemention of Robust Superpixel-Guided Attentional Adver

DLight 8 Oct 26, 2022
Data and Code for paper Outlining and Filling: Hierarchical Query Graph Generation for Answering Complex Questions over Knowledge Graph is available for research purposes.

Data and Code for paper Outlining and Filling: Hierarchical Query Graph Generation for Answering Complex Questions over Knowledge Graph is available f

Yongrui Chen 5 Nov 10, 2022
Code for EMNLP 2021 paper Contrastive Out-of-Distribution Detection for Pretrained Transformers.

Contra-OOD Code for EMNLP 2021 paper Contrastive Out-of-Distribution Detection for Pretrained Transformers. Requirements PyTorch Transformers datasets

Wenxuan Zhou 27 Oct 28, 2022
Convnext-tf - Unofficial tensorflow keras implementation of ConvNeXt

ConvNeXt Tensorflow This is unofficial tensorflow keras implementation of ConvNe

29 Oct 06, 2022
NeuralCompression is a Python repository dedicated to research of neural networks that compress data

NeuralCompression is a Python repository dedicated to research of neural networks that compress data. The repository includes tools such as JAX-based entropy coders, image compression models, video c

Facebook Research 297 Jan 06, 2023
Pytorch Implementation of Continual Learning With Filter Atom Swapping (ICLR'22 Spolight) Paper

Continual Learning With Filter Atom Swapping Pytorch Implementation of Continual Learning With Filter Atom Swapping (ICLR'22 Spolight) Paper If find t

11 Aug 29, 2022
Retrieve and analysis data from SDSS (Sloan Digital Sky Survey)

Author: Behrouz Safari License: MIT sdss A python package for retrieving and analysing data from SDSS (Sloan Digital Sky Survey) Installation Install

Behrouz 3 Oct 28, 2022
Universal Probability Distributions with Optimal Transport and Convex Optimization

Sylvester normalizing flows for variational inference Pytorch implementation of Sylvester normalizing flows, based on our paper: Sylvester normalizing

Rianne van den Berg 172 Dec 13, 2022
PyTorch implementation of paper A Fast Knowledge Distillation Framework for Visual Recognition.

FKD: A Fast Knowledge Distillation Framework for Visual Recognition Official PyTorch implementation of paper A Fast Knowledge Distillation Framework f

Zhiqiang Shen 129 Dec 24, 2022
Code and dataset for ACL2018 paper "Exploiting Document Knowledge for Aspect-level Sentiment Classification"

Aspect-level Sentiment Classification Code and dataset for ACL2018 [paper] ‘‘Exploiting Document Knowledge for Aspect-level Sentiment Classification’’

Ruidan He 146 Nov 29, 2022
Tutorial in Python targeted at Epidemiologists. Will discuss the basics of analysis in Python 3

Python-for-Epidemiologists This repository is an introduction to epidemiology analyses in Python. Additionally, the tutorials for my library zEpid are

Paul Zivich 120 Nov 17, 2022
A Fast Knowledge Distillation Framework for Visual Recognition

FKD: A Fast Knowledge Distillation Framework for Visual Recognition Official PyTorch implementation of paper A Fast Knowledge Distillation Framework f

Zhiqiang Shen 129 Dec 24, 2022
A PyTorch implementation of ViTGAN based on paper ViTGAN: Training GANs with Vision Transformers.

ViTGAN: Training GANs with Vision Transformers A PyTorch implementation of ViTGAN based on paper ViTGAN: Training GANs with Vision Transformers. Refer

Hong-Jia Chen 127 Dec 23, 2022
Robust Video Matting in PyTorch, TensorFlow, TensorFlow.js, ONNX, CoreML!

Robust Video Matting (RVM) English | 中文 Official repository for the paper Robust High-Resolution Video Matting with Temporal Guidance. RVM is specific

flow-dev 2 Aug 21, 2022
Plug and play transformer you can find network structure and official complete code by clicking List

Plug-and-play Module Plug and play transformer you can find network structure and official complete code by clicking List The following is to quickly

8 Mar 27, 2022
Python Wrapper for Embree

pyembree Python Wrapper for Embree Installation You can install pyembree (and embree) via the conda-forge package. $ conda install -c conda-forge pyem

Anthony Scopatz 67 Dec 24, 2022
Official Datasets and Implementation from our Paper "Video Class Agnostic Segmentation in Autonomous Driving".

Video Class Agnostic Segmentation [Method Paper] [Benchmark Paper] [Project] [Demo] Official Datasets and Implementation from our Paper "Video Class A

Mennatullah Siam 26 Oct 24, 2022
Learn other languages ​​using artificial intelligence with python.

The main idea of ​​the project is to facilitate the learning of other languages. We created a simple AI that will interact with you. Just ask questions that if she knows, she will answer.

Pedro Rodrigues 2 Jun 07, 2022
Official repository for "Orthogonal Projection Loss" (ICCV'21)

Orthogonal Projection Loss (ICCV'21) Kanchana Ranasinghe, Muzammal Naseer, Munawar Hayat, Salman Khan, & Fahad Shahbaz Khan Paper Link | Project Page

Kanchana Ranasinghe 83 Dec 26, 2022