Code for generating synthetic text images as described in "Synthetic Data for Text Localisation in Natural Images", Ankush Gupta, Andrea Vedaldi, Andrew Zisserman, CVPR 2016.

Overview

SynthText

Code for generating synthetic text images as described in "Synthetic Data for Text Localisation in Natural Images", Ankush Gupta, Andrea Vedaldi, Andrew Zisserman, CVPR 2016.

Synthetic Scene-Text Image Samples Synthetic Scene-Text Samples

The code in the master branch is for Python2. Python3 is supported in the python3 branch.

The main dependencies are:

pygame, opencv (cv2), PIL (Image), numpy, matplotlib, h5py, scipy

Generating samples

python gen.py --viz [--datadir <path-to-dowloaded-renderer-data>]

where, --datadir points to the renderer_data directory included in the data torrent. Specifying this datadir is optional, and if not specified, the script will automatically download and extract the same renderer.tar.gz data file (~24 M). This data file includes:

  • sample.h5: This is a sample h5 file which contains a set of 5 images along with their depth and segmentation information. Note, this is just given as an example; you are encouraged to add more images (along with their depth and segmentation information) to this database for your own use.
  • fonts: three sample fonts (add more fonts to this folder and then update fonts/fontlist.txt with their paths).
  • newsgroup: Text-source (from the News Group dataset). This can be subsituted with any text file. Look inside text_utils.py to see how the text inside this file is used by the renderer.
  • models/colors_new.cp: Color-model (foreground/background text color model), learnt from the IIIT-5K word dataset.
  • models: Other cPickle files (char_freq.cp: frequency of each character in the text dataset; font_px2pt.cp: conversion from pt to px for various fonts: If you add a new font, make sure that the corresponding model is present in this file, if not you can add it by adapting invert_font_size.py).

This script will generate random scene-text image samples and store them in an h5 file in results/SynthText.h5. If the --viz option is specified, the generated output will be visualized as the script is being run; omit the --viz option to turn-off the visualizations. If you want to visualize the results stored in results/SynthText.h5 later, run:

python visualize_results.py

Pre-generated Dataset

A dataset with approximately 800000 synthetic scene-text images generated with this code can be found here.

Adding New Images

Segmentation and depth-maps are required to use new images as background. Sample scripts for obtaining these are available here.

  • predict_depth.m MATLAB script to regress a depth mask for a given RGB image; uses the network of Liu etal. However, more recent works (e.g., this) might give better results.
  • run_ucm.m and floodFill.py for getting segmentation masks using gPb-UCM.

For an explanation of the fields in sample.h5 (e.g.: seg,area,label), please check this comment.

Pre-processed Background Images

The 8,000 background images used in the paper, along with their segmentation and depth masks, are included in the same torrent as the pre-generated dataset under the bg_data directory. The files are:

filenames description
imnames.cp names of images which do not contain background text
bg_img.tar.gz images (filter these using imnames.cp)
depth.h5 depth maps
seg.h5 segmentation maps

Downloading without BitTorrent

Downloading with BitTorrent is strongly recommended. If that is not possible, the files are also available to download over http from https://thor.robots.ox.ac.uk/~vgg/data/scenetext/preproc/<filename>, where, <filename> can be:

filenames size md5 hash
imnames.cp 180K
bg_img.tar.gz 8.9G 3eac26af5f731792c9d95838a23b5047
depth.h5 15G af97f6e6c9651af4efb7b1ff12a5dc1b
seg.h5 6.9G 1605f6e629b2524a3902a5ea729e86b2

Note: due to large size, depth.h5 is also available for download as 3-part split-files of 5G each. These part files are named: depth.h5-00, depth.h5-01, depth.h5-02. Download using the path above, and put them together using cat depth.h5-0* > depth.h5. To download, use the something like the following:

wget --continue https://thor.robots.ox.ac.uk/~vgg/data/scenetext/preproc/<filename>

use_preproc_bg.py provides sample code for reading this data.

Note: I do not own the copyright to these images.

Generating Samples with Text in non-Latin (English) Scripts

  • @JarveeLee has modified the pipeline for generating samples with Chinese text here.
  • @adavoudi has modified it for arabic/persian script, which flows from right-to-left here.
  • @MichalBusta has adapted it for a number of languages (e.g. Bangla, Arabic, Chinese, Japanese, Korean) here.
  • @gachiemchiep has adapted for Japanese here.
  • @gungui98 has adapted for Vietnamese here.
  • @youngkyung has adapted for Korean here.
  • @kotomiDu has developed an interactive UI for generating images with text here.
  • @LaJoKoch has adapted for German here.

Further Information

Please refer to the paper for more information, or contact me (email address in the paper).

Learn computer graphics by writing GPU shaders!

This repo contains a selection of projects designed to help you learn the basics of computer graphics. We'll be writing shaders to render interactive two-dimensional and three-dimensional scenes.

Eric Zhang 1.9k Jan 02, 2023

Installations for running keras-theano on GPU Upgrade pip and install opencv2 cd ~ pip install --upgrade pip pip install opencv-python Upgrade keras

Berat Kurar Barakat 14 Sep 30, 2022
OpenCVを用いたカメラキャリブレーションのサンプルです。2021/06/21時点でPython実装のある3種類(通常カメラ向け、魚眼レンズ向け(fisheyeモジュール)、全方位カメラ向け(omnidirモジュール))について用意しています。

OpenCV-CameraCalibration-Example FishEyeCameraCalibration.mp4 OpenCVを用いたカメラキャリブレーションのサンプルです 2021/06/21時点でPython実装のある以下3種類について用意しています。 通常カメラ向け 魚眼レンズ向け(

KazuhitoTakahashi 34 Nov 17, 2022
Code related to "Have Your Text and Use It Too! End-to-End Neural Data-to-Text Generation with Semantic Fidelity" paper

DataTuner You have just found the DataTuner. This repository provides tools for fine-tuning language models for a task. See LICENSE.txt for license de

81 Jan 01, 2023
Just a script for detecting the lanes in any car game (not just gta 5) with specific resolution and road design ( very basic and limited )

GTA-5-Lane-detection Just a script for detecting the lanes in any car game (not just gta 5) with specific resolution and road design ( very basic and

Danciu Georgian 4 Aug 01, 2021
Image processing in Python

scikit-image: Image processing in Python Website (including documentation): https://scikit-image.org/ Mailing list: https://mail.python.org/mailman3/l

Image Processing Toolbox for SciPy 5.2k Dec 30, 2022
Official code for ROCA: Robust CAD Model Retrieval and Alignment from a Single Image (CVPR 2022)

ROCA: Robust CAD Model Alignment and Retrieval from a Single Image (CVPR 2022) Code release of our paper ROCA. Check out our video, paper, and website

123 Dec 25, 2022
Natural language detection

Detect the language of text. What’s so cool about franc? franc can support more languages(†) than any other library franc is packaged with support for

Titus 3.8k Jan 02, 2023
Discord QR Scam Code Generator + Token grab mobile device.

A Python script that automatically generates a Nitro scam QR code and grabs the Discord token when scanned.

Visual 9 Nov 22, 2022
PSENet - Shape Robust Text Detection with Progressive Scale Expansion Network.

News Python3 implementations of PSENet [1], PAN [2] and PAN++ [3] are released at https://github.com/whai362/pan_pp.pytorch. [1] W. Wang, E. Xie, X. L

1.1k Dec 24, 2022
Slice a single image into multiple pieces and create a dataset from them

OpenCV Image to Dataset Converter Slice a single image of Persian digits into mu

Meysam Parvizi 14 Dec 29, 2022
OCR-D-compliant page segmentation

ocrd_segment This repository aims to provide a number of OCR-D-compliant processors for layout analysis and evaluation. Installation In your virtual e

OCR-D 59 Sep 10, 2022
Write-ups for the SwissHackingChallenge2021 CTF.

SwissHackingChallenge 2021 : Write-ups This repository contains a collection of my write-ups for challenges solved during the SwissHackingChallenge (S

Julien Béguin 3 Jun 07, 2021
Kornia is a open source differentiable computer vision library for PyTorch.

Open Source Differentiable Computer Vision Library

kornia 7.6k Jan 06, 2023
Perspective recovery of text using transformed ellipses

unproject_text Perspective recovery of text using transformed ellipses. See full writeup at https://mzucker.github.io/2016/10/11/unprojecting-text-wit

Matt Zucker 111 Nov 13, 2022
A program that takes in the hand gesture displayed by the user and translates ASL.

Interactive-ASL-Recognition Using the framework mediapipe made by google, OpenCV library and through self teaching, I was able to create a program tha

Riddhi Bajaj 3 Nov 22, 2021
Python Computer Vision application that allows users to draw/erase on the screen using their webcam.

CV-Virtual-WhiteBoard The Virtual WhiteBoard is a project I made using the OpenCV and Mediapipe Python libraries. Using your index and middle finger y

Stephen Wang 1 Jan 07, 2022
scantailor - Scan Tailor is an interactive post-processing tool for scanned pages.

Scan Tailor - scantailor.org This project is no longer maintained, and has not been maintained for a while. About Scan Tailor is an interactive post-p

1.5k Dec 28, 2022
SRA's seminar on Introduction to Computer Vision Fundamentals

Introduction to Computer Vision This repository includes basics to : Python Numpy: A python library Git Computer Vision. The aim of this repository is

Society of Robotics and Automation 147 Dec 04, 2022
Regions sanitàries (RS), Sectors Sanitàris (SS) i Àrees Bàsiques de Salut (ABS) de Catalunya

Regions sanitàries (RS), Sectors Sanitaris (SS), Àrees de Gestió Assistencial (AGA) i Àrees Bàsiques de Salut (ABS) de Catalunya Fitxers GeoJSON de le

Glòria Macià Muñoz 2 Jan 23, 2022