PyTorch framework, for reproducing experiments from the paper Implicit Regularization in Hierarchical Tensor Factorization and Deep Convolutional Neural Networks

Overview

Implicit Regularization in Hierarchical Tensor Factorization and Deep Convolutional Neural Networks.

Code, based on the PyTorch framework, for reproducing experiments from the paper Implicit Regularization in Hierarchical Tensor Factorization and Deep Convolutional Neural Networks.

Install Requirements

Tested with python 3.8.

pip install -r requirements.txt

1. Incremental Hierarchical Tensor Rank Learning

1.1 Generating Data

Matrix Completion/Sensing

python matrix_factorization_data_generator.py --task_type completion
  • Setting task_type to "sensing" will generate matrix sensing data.
  • Use the -h flag for information on the customizable run arguments.

Tensor Completion/Sensing

python tensor_sensing_data_generator.py --task_type completion
  • Setting task_type to "sensing" will generate tensor sensing data.
  • Use the -h flag for information on the customizable run arguments.

1.2 Running Experiments

Matrix Factorization

python matrix_factorization_experiments_runner.py \
--dataset_path 
   
     \
--epochs 500000 \
--num_train_samples 2048 \
--outputs_dir "outputs/mf_exps" \
--save_logs \
--save_metric_plots \
--save_checkpoints \
--validate_every 25 \
--save_every_num_val 50 \
--epoch_log_interval 25 \
--train_batch_log_interval -1 

   
  • dataset_path should point to the dataset file generated in the previous step.
  • A folder with checkpoints, metric plots, and a log file will be automatically created under the directory specified by outputs_dir.
  • Use the -h flag for information on the customizable run arguments.

Tensor Factorization

python tensor_factorization_experiments_runner.py \
--dataset_path 
   
     \
--epochs 500000 \
--num_train_samples 2048 \
--outputs_dir "outputs/tf_exps" \
--save_logs \
--save_metric_plots \
--save_checkpoints \
--validate_every 25 \
--save_every_num_val 50 \
--epoch_log_interval 25 \
--train_batch_log_interval -1 

   
  • dataset_path should point to the dataset file generated in the previous step.
  • A folder with checkpoints, metric plots, and a log file will be automatically created under the directory specified by outputs_dir.
  • Use the -h flag for information on the customizable run arguments.

Hierarchical Tensor Factorization

python hierarchical_tensor_factorization_experiments_runner.py \
--dataset_path 
   
     \
--epochs 500000 \
--num_train_samples 2048 \
--outputs_dir "outputs/htf_exps" \
--save_logs \
--save_metric_plots \
--save_checkpoints \
--validate_every 25 \
--save_every_num_val 50 \
--epoch_log_interval 25 \
--train_batch_log_interval -1 

   
  • dataset_path should point to the dataset file generated in the previous step.
  • A folder with checkpoints, metric plots, and a log file will be automatically created under the directory specified by outputs_dir.
  • Use the -h flag for information on the customizable run arguments.

1.3 Plotting Results

Plotting metrics against the number of iterations for an experiment (or multiple experiments) can be done by:

python dynamical_analysis_results_multi_plotter.py \
--plot_config_path 
   

   
  • plot_config_path should point to a file with the plot configuration. For example, plot_configs/mf_tf_htf_dyn_plot_config.json is the configuration used to create the plot below. To run it, it suffices to fill in the checkpoint_path fields (checkpoints are created during training inside the respective experiment's folder).

Example plot:

2. Countering Locality Bias of Convolutional Networks via Regularization

2.1. Is Same Class

2.1.1 Generating Data

Generating train data is done by running:

python is_same_class_data_generator.py --train --num_samples 5000

For test data use:

python is_same_class_data_generator.py --num_samples 10000
  • Use the output_dir argument to set the output directory in which the datasets will be saved (default is ./data/is_same).
  • The flag train determines whether to generate the dataset using the train or test set of the original dataset.
  • Specify num_samples to set how many samples to generate.
  • Use the -h flag for information on the customizable run arguments.

2.1.2 Running Experiments

python is_same_class_experiments_runner.py \
--train_dataset_path 
   
     \
--test_dataset_path 
    
      \
--epochs 150 \
--outputs_dir "outputs/is_same_exps" \
--save_logs \
--save_metric_plots \
--save_checkpoints \
--validate_every 1 \
--save_every_num_val 1 \
--epoch_log_interval 1 \
--train_batch_log_interval 50 \
--stop_on_perfect_train_acc \
--stop_on_perfect_train_acc_patience 20 \
--model resnet18 \
--distance 0 \
--grad_change_reg_coeff 0

    
   
  • train_dataset_path and test_dataset_path are the paths of the train and test dataset files, respectively.
  • A folder with checkpoints, metric plots, and a log file will be automatically created under the directory specified by outputs_dir.
  • Use the -h flag for information on the customizable run arguments.

2.1.3 Plotting Results

Plotting different regularization options against the task difficulty can be done by:

\ --error_bars_opacity 0.5 ">
python locality_bias_plotter.py \
--experiments_dir 
   
     \
--experiment_groups_dir_names 
     
     
       .. \
--per_experiment_group_y_axis_value_name 
       
       
         .. \ --per_experiment_group_label 
         
         
           .. \ --x_axis_value_name "distance" \ --plot_title "Is Same Class" \ --x_label "distance between images" \ --y_label "test accuracy (%)" \ --save_plot_to 
          
            \ --error_bars_opacity 0.5 
          
         
        
       
      
     
    
   
  • Set experiments_dir to the directory containing the experiments you would like to plot.
  • Specify after experiment_groups_dir_names the names of the experiment groups, each group name should correspond to a sub-directory with the group name under experiments_dir path.
  • Use per_experiment_group_y_axis_value_name to name the report value for each experiment. Name should match key in experiment's summary.json files. Use dot notation for nested keys.
  • per_experiment_group_label sets a label for the groups by the same order they were mentioned.
  • save_plot_to is the path to save the plot at.
  • Use x_axis_value_name to set the name of the value to use as the x-axis. This should match to a key in either summary.json or config.json files. Use dot notation for nested keys.
  • Use the -h flag for information on the customizable run arguments.

Example plots:

2.2. Pathfinder

2.2.1 Generating Data

To generate Pathfinder datasets, first run the following command to create raw image samples for all specified path lengths:

python pathfinder_raw_images_generator.py \
--num_samples 20000 \
--path_lengths 3 5 7 9
  • Use the output_dir argument to set the output directory in which the raw samples will be saved (default is ./data/pathfinder/raw).
  • The samples for each path length are separated to different directories.
  • Use the -h flag for information on the customizable run arguments.

Then, use the following command to create the dataset files for all path lengths (one dataset per length):

python pathfinder_data_generator.py \
--dataset_path data/pathfinder/raw \
--num_train_samples 10000 \
--num_test_samples 10000
  • dataset_path is the path to the directory of the raw images.
  • Use the output_dir argument to set the output directory in which the datasets will be saved (default is ./data/pathfinder).
  • Use the -h flag for information on the customizable run arguments.

2.2.2 Running Experiments

python pathfinder_experiments_runner.py \
--dataset_path 
   
     \
--epochs 150 \
--outputs_dir "outputs/pathfinder_exps" \
--save_logs \
--save_metric_plots \
--save_checkpoints \
--validate_every 1 \
--save_every_num_val 1 \
--epoch_log_interval 1 \
--train_batch_log_interval 50 \
--stop_on_perfect_train_acc \
--stop_on_perfect_train_acc_patience 20 \
--model resnet18 \
--grad_change_reg_coeff 0

   
  • dataset_path should point to the dataset file generated in the previous step.
  • A folder with checkpoints, metric plots, and a log file will be automatically created under the directory specified by outputs_dir.
  • Use the -h flag for information on the customizable run arguments.

2.2.3 Plotting Results

Plotting different regularization options against the task difficulty can be done by:

\ --error_bars_opacity 0.5">
python locality_bias_plotter.py \
--experiments_dir 
   
     \
--experiment_groups_dir_names 
     
     
       .. \
--per_experiment_group_y_axis_value_name 
       
       
         .. \ --per_experiment_group_label 
         
         
           .. \ --x_axis_value_name "dataset_path" \ --plot_title "Pathfinder" \ --x_label "path length" \ --y_label "test accuracy (%)" \ --x_axis_ticks 3 5 7 9 \ --save_plot_to 
          
            \ --error_bars_opacity 0.5 
          
         
        
       
      
     
    
   
  • Set experiments_dir to the directory containing the experiments you would like to plot.
  • Specify after experiment_groups_dir_names the names of the experiment groups, each group name should correspond to a sub-directory with the group name under experiments_dir path.
  • Use per_experiment_group_y_axis_value_name to name the report value for each experiment. Name should match key in experiment's summary.json files. Use dot notation for nested keys.
  • per_experiment_group_label sets a label for the groups by the same order they were mentioned.
  • save_plot_to is the path to save the plot at.
  • Use x_axis_value_name to set the name of the value to use as the x-axis. This should match to a key in either summary.json or config.json files. Use dot notation for nested keys.
  • Use the -h flag for information on the customizable run arguments.

Example plots:

Citation

For citing the paper, you can use:

@article{razin2022implicit,
  title={Implicit Regularization in Hierarchical Tensor Factorization and Deep Convolutional Neural Networks},
  author={Razin, Noam and Maman, Asaf and Cohen, Nadav},
  journal={arXiv preprint arXiv:2201.11729},
  year={2022}
}
Owner
Asaf
MS.c Student Computer Science
Asaf
Learnable Multi-level Frequency Decomposition and Hierarchical Attention Mechanism for Generalized Face Presentation Attack Detection

LMFD-PAD Note This is the official repository of the paper: LMFD-PAD: Learnable Multi-level Frequency Decomposition and Hierarchical Attention Mechani

28 Dec 02, 2022
Minimal deep learning library written from scratch in Python, using NumPy/CuPy.

SmallPebble Project status: experimental, unstable. SmallPebble is a minimal/toy automatic differentiation/deep learning library written from scratch

Sidney Radcliffe 92 Dec 30, 2022
PyTorch implementation of our ICCV2021 paper: StructDepth: Leveraging the structural regularities for self-supervised indoor depth estimation

StructDepth PyTorch implementation of our ICCV2021 paper: StructDepth: Leveraging the structural regularities for self-supervised indoor depth estimat

SJTU-ViSYS 112 Nov 28, 2022
Tensorflow implementation of "Learning Deconvolution Network for Semantic Segmentation"

Tensorflow implementation of Learning Deconvolution Network for Semantic Segmentation. Install Instructions Works with tensorflow 1.11.0 and uses the

Fabian Bormann 224 Apr 15, 2022
Implementations of LSTM: A Search Space Odyssey variants and their training results on the PTB dataset.

An LSTM Odyssey Code for training variants of "LSTM: A Search Space Odyssey" on Fomoro. Check out the blog post. Training Install TensorFlow. Clone th

Fomoro AI 95 Apr 13, 2022
Official Keras Implementation for UNet++ in IEEE Transactions on Medical Imaging and DLMIA 2018

UNet++: A Nested U-Net Architecture for Medical Image Segmentation UNet++ is a new general purpose image segmentation architecture for more accurate i

Zongwei Zhou 1.8k Dec 27, 2022
In this project we use both Resnet and Self-attention layer for cat, dog and flower classification.

cdf_att_classification classes = {0: 'cat', 1: 'dog', 2: 'flower'} In this project we use both Resnet and Self-attention layer for cdf-Classification.

3 Nov 23, 2022
Weakly- and Semi-Supervised Panoptic Segmentation (ECCV18)

Weakly- and Semi-Supervised Panoptic Segmentation by Qizhu Li*, Anurag Arnab*, Philip H.S. Torr This repository demonstrates the weakly supervised gro

Qizhu Li 159 Dec 20, 2022
Extending JAX with custom C++ and CUDA code

Extending JAX with custom C++ and CUDA code This repository is meant as a tutorial demonstrating the infrastructure required to provide custom ops in

Dan Foreman-Mackey 237 Dec 23, 2022
Not Suitable for Work (NSFW) classification using deep neural network Caffe models.

Open nsfw model This repo contains code for running Not Suitable for Work (NSFW) classification deep neural network Caffe models. Please refer our blo

Yahoo 5.6k Jan 05, 2023
OREO: Object-Aware Regularization for Addressing Causal Confusion in Imitation Learning (NeurIPS 2021)

OREO: Object-Aware Regularization for Addressing Causal Confusion in Imitation Learning (NeurIPS 2021) Video demo We here provide a video demo from co

20 Nov 25, 2022
FS2KToolbox FS2K Dataset Towards the translation between Face

FS2KToolbox FS2K Dataset Towards the translation between Face -- Sketch. Download (photo+sketch+annotation): Google-drive, Baidu-disk, pw: FS2K. For

Deng-Ping Fan 5 Jan 03, 2023
PaddleViT: State-of-the-art Visual Transformer and MLP Models for PaddlePaddle 2.0+

PaddlePaddle Vision Transformers State-of-the-art Visual Transformer and MLP Models for PaddlePaddle 🤖 PaddlePaddle Visual Transformers (PaddleViT or

1k Dec 28, 2022
PyTorch framework for Deep Learning research and development.

Accelerated DL & RL PyTorch framework for Deep Learning research and development. It was developed with a focus on reproducibility, fast experimentati

Catalyst-Team 29 Jul 13, 2022
3D Generative Adversarial Network

Learning a Probabilistic Latent Space of Object Shapes via 3D Generative-Adversarial Modeling This repository contains pre-trained models and sampling

Chengkai Zhang 791 Dec 20, 2022
Official implementation for Likelihood Regret: An Out-of-Distribution Detection Score For Variational Auto-encoder at NeurIPS 2020

Likelihood-Regret Official implementation of Likelihood Regret: An Out-of-Distribution Detection Score For Variational Auto-encoder at NeurIPS 2020. T

Xavier 33 Oct 12, 2022
Official PyTorch implemention of our paper "Learning to Rectify for Robust Learning with Noisy Labels".

WarPI The official PyTorch implemention of our paper "Learning to Rectify for Robust Learning with Noisy Labels". Run python main.py --corruption_type

Haoliang Sun 3 Sep 03, 2022
Graph Convolutional Neural Networks with Data-driven Graph Filter (GCNN-DDGF)

Graph Convolutional Gated Recurrent Neural Network (GCGRNN) Improved from Graph Convolutional Neural Networks with Data-driven Graph Filter (GCNN-DDGF

Lei Lin 21 Dec 18, 2022
Unofficial PyTorch implementation of TokenLearner by Google AI

tokenlearner-pytorch Unofficial PyTorch implementation of TokenLearner by Ryoo et al. from Google AI (abs, pdf) Installation You can install TokenLear

Rishabh Anand 46 Dec 20, 2022
Complex-Valued Neural Networks (CVNN)Complex-Valued Neural Networks (CVNN)

Complex-Valued Neural Networks (CVNN) Done by @NEGU93 - J. Agustin Barrachina Using this library, the only difference with a Tensorflow code is that y

youceF 1 Nov 12, 2021