Regression Metrics Calculation Made easy for tensorflow2 and scikit-learn

Overview

Regression Metrics

Installation

To install the package from the PyPi repository you can execute the following command:

pip install regressionmetrics

If you prefer, you can clone it and run the setup.py file. Use the following commands to get a copy from GitHub and install all dependencies:

git clone https://github.com/ashishpatel26/regressionmetrics.git
cd regressionmetrics
pip install .
  • Mean Absolute Error - sklearn, keras
  • Mean Square Error - sklearn, keras
  • Root Mean Square Error - sklearn, keras
  • Root Mean Square Logarithmic Error - sklearn, keras
  • Root Mean Square Logarithmic Error with negative value handle - sklearn
  • R2 Score - sklearn, keras
  • Adjusted R2 Score - sklearn, keras
  • Mean Absolute Percentage Error - sklearn, keras
  • Mean squared logarithmic Error - sklearn, keras
  • Symmetric mean absolute percentage error - sklearn, keras
  • Normalized Root Mean Squared Error - sklearn, keras

Usage

Usage with scikit learn :

from regressionmetrics.metrics import *

y_true = [3, 0.5, 2, 7]
y_pred = [2.5, 0.0, 2, -8]


print("R2Score: ",r2(y_true, y_pred))
print("Adjusted_R2_Score:",adj_r2(y_true, y_pred))
print("RMSE:", rmse(y_true, y_pred))
print("MAE:",mae(y_true, y_pred))
print("RMSLE with Neg Value:", rmsle_with_negval(y_true, y_pred))
print("MSE:", mse(y_true, y_pred))
print("MAPE: ", mape(y_true, y_pred))

Usage with Tensorflow keras:

from regressionmetrics.keras import *
import pandas as pd
import numpy as np

import tensorflow as tf
from tensorflow import keras
from tensorflow.keras import layers

(x_train, y_train), (x_test, y_test) = tf.keras.datasets.boston_housing.load_data(path="boston_housing.npz", test_split=0.2, seed=113)

model = keras.Sequential([
    layers.Dense(64, activation='relu', input_shape=(x_train.shape[1],)),
    layers.Dense(64, activation='relu'),
    layers.Dense(1)
])
model.compile(optimizer='rmsprop', loss='mse', metrics=[r2, mae, mse, rmse, mape, rmsle, nrmse])
model.fit(x_train, y_train, epochs=10, batch_size=32, validation_data=(x_test, y_test))
Epoch 1/10
 1/13 [=>............................] - ETA: 7s - loss: 1574.7567 - r2: 0.6597 - mae: 37.1803 - mse: 1574.7567 - rmse: 37.1802 - mape: 159.261313/13 [==============================] - 1s 15ms/step - loss: 270.0653 - r2: 0.9472 - mae: 11.5427 - mse: 270.0653 - rmse: 11.5427 - mape: 57.3519 - rmsle: 0.6445 - nrmse: 0.5735 - val_loss: 88.6351 - val_r2: 0.9727 - val_mae: 6.6028 - val_mse: 88.6351 - val_rmse: 6.6028 - val_mape: 29.6502 - val_rmsle: 0.3161 - val_nrmse: 0.2965
Epoch 2/10
 1/13 [=>............................] - ETA: 0s - loss: 74.6623 - r2: 0.9913 - mae: 5.5958 - mse: 74.6623 - rmse: 5.5958 - mape: 25.3655 - rmsl13/13 [==============================] - 0s 3ms/step - loss: 87.1876 - r2: 0.9856 - mae: 6.9466 - mse: 87.1876 - rmse: 6.9466 - mape: 33.4256 - rmsle: 0.3057 - nrmse: 0.3343 - val_loss: 81.7884 - val_r2: 0.9712 - val_mae: 6.6424 - val_mse: 81.7884 - val_rmse: 6.6424 - val_mape: 28.8687 - val_rmsle: 0.3334 - val_nrmse: 0.2887
Epoch 3/10
 1/13 [=>............................] - ETA: 0s - loss: 41.2790 - r2: 0.9722 - mae: 5.3798 - mse: 41.2790 - rmse: 5.3798 - mape: 28.7497 - rmsl13/13 [==============================] - 0s 3ms/step - loss: 103.6462 - r2: 0.9825 - mae: 7.1041 - mse: 103.6462 - rmse: 7.1041 - mape: 34.6278 - rmsle: 0.3231 - nrmse: 0.3463 - val_loss: 71.7539 - val_r2: 0.9769 - val_mae: 6.1455 - val_mse: 71.7539 - val_rmse: 6.1455 - val_mape: 27.5078 - val_rmsle: 0.2893 - val_nrmse: 0.2751
Epoch 4/10
 1/13 [=>............................] - ETA: 0s - loss: 113.6758 - r2: 0.9917 - mae: 6.6575 - mse: 113.6758 - rmse: 6.6575 - mape: 20.8683 - rm13/13 [==============================] - 0s 3ms/step - loss: 88.1601 - r2: 0.9823 - mae: 6.8479 - mse: 88.1601 - rmse: 6.8479 - mape: 32.5867 - rmsle: 0.3080 - nrmse: 0.3259 - val_loss: 63.3707 - val_r2: 0.9829 - val_mae: 6.0845 - val_mse: 63.3707 - val_rmse: 6.0845 - val_mape: 33.1628 - val_rmsle: 0.2747 - val_nrmse: 0.3316
Epoch 5/10
 1/13 [=>............................] - ETA: 0s - loss: 85.8188 - r2: 0.9893 - mae: 7.0097 - mse: 85.8188 - rmse: 7.0097 - mape: 34.8362 - rmsl13/13 [==============================] - 0s 3ms/step - loss: 82.3233 - r2: 0.9860 - mae: 6.5795 - mse: 82.3233 - rmse: 6.5795 - mape: 32.5198 - rmsle: 0.3105 - nrmse: 0.3252 - val_loss: 74.4783 - val_r2: 0.9813 - val_mae: 6.8936 - val_mse: 74.4783 - val_rmse: 6.8936 - val_mape: 41.9492 - val_rmsle: 0.3067 - val_nrmse: 0.4195
Epoch 7/10
 1/13 [=>............................] - ETA: 0s - loss: 105.6430 - r2: 0.9658 - mae: 9.4737 - mse: 105.6430 - rmse: 9.4737 - mape: 53.0854 - rm13/13 [==============================] - 0s 3ms/step - loss: 76.0740 - r2: 0.9856 - mae: 6.4234 - mse: 76.0740 - rmse: 6.4234 - mape: 31.8728 - rmsle: 0.2828 - nrmse: 0.3187 - val_loss: 104.1779 - val_r2: 0.9679 - val_mae: 7.5539 - val_mse: 104.1779 - val_rmse: 7.5539 - val_mape: 30.9401 - val_rmsle: 0.3692 - val_nrmse: 0.3094
Epoch 8/10
 1/13 [=>............................] - ETA: 0s - loss: 100.0114 - r2: 0.9833 - mae: 6.8492 - mse: 100.0114 - rmse: 6.8492 - mape: 27.9621 - rm13/13 [==============================] - 0s 4ms/step - loss: 68.4268 - r2: 0.9892 - mae: 5.9540 - mse: 68.4268 - rmse: 5.9540 - mape: 29.7586 - rmsle: 0.2623 - nrmse: 0.2976 - val_loss: 171.7968 - val_r2: 0.9412 - val_mae: 10.5855 - val_mse: 171.7968 - val_rmse: 10.5855 - val_mape: 47.9010 - val_rmsle: 0.7561 - val_nrmse: 0.4790
Epoch 9/10
 1/13 [=>............................] - ETA: 0s - loss: 291.8670 - r2: 0.9725 - mae: 13.9899 - mse: 291.8670 - rmse: 13.9899 - mape: 61.3658 - 13/13 [==============================] - 0s 3ms/step - loss: 92.3889 - r2: 0.9796 - mae: 6.8932 - mse: 92.3889 - rmse: 6.8932 - mape: 33.2856 - rmsle: 0.3333 - nrmse: 0.3329 - val_loss: 67.2208 - val_r2: 0.9808 - val_mae: 5.8498 - val_mse: 67.2208 - val_rmse: 5.8498 - val_mape: 26.4504 - val_rmsle: 0.2680 - val_nrmse: 0.2645
Epoch 10/10
 1/13 [=>............................] - ETA: 0s - loss: 97.0853 - r2: 0.9923 - mae: 5.9866 - mse: 97.0853 - rmse: 5.9866 - mape: 24.9878 - rmsl13/13 [==============================] - 0s 3ms/step - loss: 78.3823 - r2: 0.9856 - mae: 6.5958 - mse: 78.3823 - rmse: 6.5958 - mape: 32.8136 - rmsle: 0.3025 - nrmse: 0.3281 - val_loss: 69.5314 - val_r2: 0.9787 - val_mae: 6.8302 - val_mse: 69.5314 - val_rmse: 6.8302 - val_mape: 37.3933 - val_rmsle: 0.2974 - val_nrmse: 0.3739

😃 Thanks for reading and forking.

You might also like...
Hitters Linear Regression - Hitters Linear Regression With Python
Hitters Linear Regression - Hitters Linear Regression With Python

Hitters_Linear_Regression Kullanacağımız veri seti Carnegie Mellon Üniversitesi'

A set of tools for creating and testing machine learning features, with a scikit-learn compatible API

Feature Forge This library provides a set of tools that can be useful in many machine learning applications (classification, clustering, regression, e

Using python and scikit-learn to make stock predictions

MachineLearningStocks in python: a starter project and guide EDIT as of Feb 2021: MachineLearningStocks is no longer actively maintained MachineLearni

A real-time speech emotion recognition application using Scikit-learn and gradio
A real-time speech emotion recognition application using Scikit-learn and gradio

Speech-Emotion-Recognition-App A real-time speech emotion recognition application using Scikit-learn and gradio. Requirements librosa==0.6.3 numpy sou

Python package for Bayesian Machine Learning with scikit-learn API
Python package for Bayesian Machine Learning with scikit-learn API

Python package for Bayesian Machine Learning with scikit-learn API Installing & Upgrading package pip install https://github.com/AmazaspShumik/sklearn

A scikit-learn compatible neural network library that wraps PyTorch

A scikit-learn compatible neural network library that wraps PyTorch. Resources Documentation Source Code Examples To see more elaborate examples, look

scikit-learn: machine learning in Python
scikit-learn: machine learning in Python

scikit-learn is a Python module for machine learning built on top of SciPy and is distributed under the 3-Clause BSD license. The project was started

A scikit-learn compatible neural network library that wraps PyTorch

A scikit-learn compatible neural network library that wraps PyTorch. Resources Documentation Source Code Examples To see more elaborate examples, look

A scikit-learn compatible neural network library that wraps PyTorch

A scikit-learn compatible neural network library that wraps PyTorch. Resources Documentation Source Code Examples To see more elaborate examples, look

Comments
  • Very nice toolkit

    Very nice toolkit

    This isn't really an issue. I wanted to thank you for sharing such a nice toolkit for regression tasks with tensorflow

    Do you have a similar toolkit for classification?

    opened by happypanda5 0
Releases(v1.4.0)
  • v1.4.0(Oct 30, 2021)

    • Changelog for v1.4.0 (2022-01-13)

    • Name clashes resolved with keras names
    • Changelog for v1.3.0 (2021-11-18)

    • new regresson metrics are added with details explaination
    • Changelog for v1.2.0 (2021-10-31)

    • Adjusted r2 score error solved
    • Changelog for v1.1.0 (2021-10-31)

    • SomeError solved
    • Changelog for v1.0.0 (2021-10-31)

    • regressionmetrics package first release 1.0.0.
    Source code(tar.gz)
    Source code(zip)
Owner
Ashish Patel
AI Researcher & Senior Data Scientist at Softweb Solutions Avnet Solutions(Fortune 500) | Rank 3 Kaggle Kernel Master
Ashish Patel
Net2net - Network-to-Network Translation with Conditional Invertible Neural Networks

Net2Net Code accompanying the NeurIPS 2020 oral paper Network-to-Network Translation with Conditional Invertible Neural Networks Robin Rombach*, Patri

CompVis Heidelberg 206 Dec 20, 2022
Recurrent Scale Approximation (RSA) for Object Detection

Recurrent Scale Approximation (RSA) for Object Detection Codebase for Recurrent Scale Approximation for Object Detection in CNN published at ICCV 2017

Yu Liu (Louis) 239 Dec 28, 2022
A PyTorch implementation of "TokenLearner: What Can 8 Learned Tokens Do for Images and Videos?"

TokenLearner: What Can 8 Learned Tokens Do for Images and Videos? Source: Improving Vision Transformer Efficiency and Accuracy by Learning to Tokenize

Caiyong Wang 14 Sep 20, 2022
Official code for Next Check-ins Prediction via History and Friendship on Location-Based Social Networks (MDM 2018)

MUC Next Check-ins Prediction via History and Friendship on Location-Based Social Networks (MDM 2018) Performance Details for Accuracy: | Dataset

Yijun Su 3 Oct 09, 2022
RuDOLPH: One Hyper-Modal Transformer can be creative as DALL-E and smart as CLIP

[Paper] [Хабр] [Model Card] [Colab] [Kaggle] RuDOLPH 🦌 🎄 ☃️ One Hyper-Modal Transformer can be creative as DALL-E and smart as CLIP Russian Diffusio

AI Forever 232 Jan 04, 2023
The codes and related files to reproduce the results for Image Similarity Challenge Track 1.

ISC-Track1-Submission The codes and related files to reproduce the results for Image Similarity Challenge Track 1. Required dependencies To begin with

Wenhao Wang 115 Jan 02, 2023
PyTorch implementation of Interpretable Explanations of Black Boxes by Meaningful Perturbation

PyTorch implementation of Interpretable Explanations of Black Boxes by Meaningful Perturbation The paper: https://arxiv.org/abs/1704.03296 What makes

Jacob Gildenblat 322 Dec 17, 2022
Short and long time series classification using convolutional neural networks

time-series-classification Short and long time series classification via convolutional neural networks In this project, we present a novel framework f

35 Oct 22, 2022
Nerf pl - NeRF (Neural Radiance Fields) and NeRF in the Wild using pytorch-lightning

nerf_pl Update: an improved NSFF implementation to handle dynamic scene is open! Update: NeRF-W (NeRF in the Wild) implementation is added to nerfw br

AI葵 1.8k Dec 30, 2022
TyXe: Pyro-based BNNs for Pytorch users

TyXe: Pyro-based BNNs for Pytorch users TyXe aims to simplify the process of turning Pytorch neural networks into Bayesian neural networks by leveragi

87 Jan 03, 2023
HPRNet: Hierarchical Point Regression for Whole-Body Human Pose Estimation

HPRNet: Hierarchical Point Regression for Whole-Body Human Pose Estimation Official PyTroch implementation of HPRNet. HPRNet: Hierarchical Point Regre

Nermin Samet 53 Dec 04, 2022
SSD: Single Shot MultiBox Detector pytorch implementation focusing on simplicity

SSD: Single Shot MultiBox Detector Introduction Here is my pytorch implementation of 2 models: SSD-Resnet50 and SSDLite-MobilenetV2.

Viet Nguyen 149 Jan 07, 2023
Unsupervised phone and word segmentation using dynamic programming on self-supervised VQ features.

Unsupervised Phone and Word Segmentation using Vector-Quantized Neural Networks Overview Unsupervised phone and word segmentation on speech data is pe

Herman Kamper 13 Dec 11, 2022
ML From Scratch

ML from Scratch MACHINE LEARNING TOPICS COVERED - FROM SCRATCH Linear Regression Logistic Regression K Means Clustering K Nearest Neighbours Decision

Tanishq Gautam 66 Nov 02, 2022
Crowd-Kit is a powerful Python library that implements commonly-used aggregation methods for crowdsourced annotation and offers the relevant metrics and datasets

Crowd-Kit: Computational Quality Control for Crowdsourcing Documentation Crowd-Kit is a powerful Python library that implements commonly-used aggregat

Toloka 125 Dec 30, 2022
FIRM-AFL is the first high-throughput greybox fuzzer for IoT firmware.

FIRM-AFL FIRM-AFL is the first high-throughput greybox fuzzer for IoT firmware. FIRM-AFL addresses two fundamental problems in IoT fuzzing. First, it

356 Dec 23, 2022
A general 3D Object Detection codebase in PyTorch.

Det3D is the first 3D Object Detection toolbox which provides off the box implementations of many 3D object detection algorithms such as PointPillars, SECOND, PIXOR, etc, as well as state-of-the-art

Benjin Zhu 1.4k Jan 05, 2023
Synthetic LiDAR sequential point cloud dataset with point-wise annotations

SynLiDAR dataset: Learning From Synthetic LiDAR Sequential Point Cloud This is official repository of the SynLiDAR dataset. For technical details, ple

78 Dec 27, 2022
This repository provides an unified frameworks to train and test the state-of-the-art few-shot font generation (FFG) models.

FFG-benchmarks This repository provides an unified frameworks to train and test the state-of-the-art few-shot font generation (FFG) models. What is Fe

Clova AI Research 101 Dec 27, 2022
Spatial Temporal Graph Convolutional Networks (ST-GCN) for Skeleton-Based Action Recognition in PyTorch

Reminder ST-GCN has transferred to MMSkeleton, and keep on developing as an flexible open source toolbox for skeleton-based human understanding. You a

sijie yan 1.1k Dec 25, 2022