Hitters Linear Regression - Hitters Linear Regression With Python

Overview

Hitters_Linear_Regression

image

Kullanacağımız veri seti Carnegie Mellon Üniversitesi'nde bulunan StatLib kütüphanesinden alınmıştır. Veri seti 1988 ASA Grafik Bölümü Poster Oturumu'nda kullanılan verilerin bir parçasıdır. Maaş verileri orijinal olarak Sports Illustrated, 20 Nisan 1987'den alınmıştır. 1986 ve kariyer istatistikleri, Collier Books, Macmillan Publishing Company, New York tarafından yayınlanan 1987 Beyzbol Ansiklopedisi Güncellemesinden elde edilmiştir. Salary yani maaş değişkeninini bu projede linear regression ile tahmin edeceğiz.

Veri setini daha yakından tanımak adına değişkenleri tanıyalım:

AtBat: 1986–1987 sezonunda bir beyzbol sopası ile topa yapılan vuruş sayısı 

Hits: 1986–1987 sezonundaki isabet sayısı 

HmRun: 1986–1987 sezonundaki en değerli vuruş sayısı 

Runs: 1986–1987 sezonunda takımına kazandırdığı sayı 

RBI: Bir vurucunun vuruş yaptığında koşu yaptırdığı oyuncu sayısı 

Walks: Karşı oyuncuya yaptırılan hata sayısı 

Years: Oyuncunun major liginde oynama süresi (sene) 

CAtBat: Oyuncunun kariyeri boyunca topa vurma sayısı 

CHits: Oyuncunun kariyeri boyunca yaptığı isabetli vuruş sayısı 

CHmRun: Oyucunun kariyeri boyunca yaptığı en değerli vuruş sayısı 

CRuns: Oyuncunun kariyeri boyunca takımına kazandırdığı sayı 

CRBI: Oyuncunun kariyeri boyunca koşu yaptırdırdığı oyuncu sayısı 

CWalks: Oyuncun kariyeri boyunca karşı oyuncuya yaptırdığı hata sayısı 

League: Oyuncunun sezon sonuna kadar oynadığı ligi gösteren A ve N seviyelerine sahip bir faktör 

Division: 1986 sonunda oyuncunun oynadığı pozisyonu gösteren E ve W seviyelerine sahip bir faktör 

PutOuts: Oyun icinde takım arkadaşınla yardımlaşma 

Assits: 1986–1987 sezonunda oyuncunun yaptığı asist sayısı 

Errors: 1986–1987 sezonundaki oyuncunun hata sayısı 

Salary: Oyuncunun 1986–1987 sezonunda aldığı maaş(bin uzerinden) 

NewLeague: 1987 sezonunun başında oyuncunun ligini gösteren A ve N seviyelerine sahip bir faktör

Owner
AyseBuyukcelik
AyseBuyukcelik
Code for "On Memorization in Probabilistic Deep Generative Models"

On Memorization in Probabilistic Deep Generative Models This repository contains the code necessary to reproduce the experiments in On Memorization in

The Alan Turing Institute 3 Jun 09, 2022
RL-driven agent playing tic-tac-toe on starknet against challengers.

tictactoe-on-starknet RL-driven agent playing tic-tac-toe on starknet against challengers. GUI reference: https://pythonguides.com/create-a-game-using

21 Jul 30, 2022
Pytorch implementation of RED-SDS (NeurIPS 2021).

Recurrent Explicit Duration Switching Dynamical Systems (RED-SDS) This repository contains a reference implementation of RED-SDS, a non-linear state s

Abdul Fatir 10 Dec 02, 2022
MoveNetを用いたPythonでの姿勢推定のデモ

MoveNet-Python-Example MoveNetのPythonでの動作サンプルです。 ONNXに変換したモデルも同梱しています。変換自体を試したい方はMoveNet_tf2onnx.ipynbを使用ください。 2021/08/24時点でTensorFlow Hubで提供されている以下モデ

KazuhitoTakahashi 38 Dec 17, 2022
EMNLP 2021: Single-dataset Experts for Multi-dataset Question-Answering

MADE (Multi-Adapter Dataset Experts) This repository contains the implementation of MADE (Multi-adapter dataset experts), which is described in the pa

Princeton Natural Language Processing 68 Jul 18, 2022
Code release for NeX: Real-time View Synthesis with Neural Basis Expansion

NeX: Real-time View Synthesis with Neural Basis Expansion Project Page | Video | Paper | COLAB | Shiny Dataset We present NeX, a new approach to novel

536 Dec 20, 2022
Source code and dataset of the paper "Contrastive Adaptive Propagation Graph Neural Networks forEfficient Graph Learning"

CAPGNN Source code and dataset of the paper "Contrastive Adaptive Propagation Graph Neural Networks forEfficient Graph Learning" Paper URL: https://ar

1 Mar 12, 2022
LabelImg is a graphical image annotation tool.

LabelImgPlus LabelImg is a graphical image annotation tool. This project is not updated with new functions now. More functions are supported with Labe

lzx1413 200 Dec 20, 2022
Federated learning on graph, especially on graph neural networks (GNNs), knowledge graph, and private GNN.

Federated learning on graph, especially on graph neural networks (GNNs), knowledge graph, and private GNN.

keven 198 Dec 20, 2022
Graph parsing approach to structured sentiment analysis.

Fine-grained Sentiment Analysis as Dependency Graph Parsing This repository contains the code and datasets described in following paper: Fine-grained

Jeremy Barnes 36 Dec 12, 2022
A modular, research-friendly framework for high-performance and inference of sequence models at many scales

T5X T5X is a modular, composable, research-friendly framework for high-performance, configurable, self-service training, evaluation, and inference of

Google Research 1.1k Jan 08, 2023
The Easy-to-use Dialogue Response Selection Toolkit for Researchers

Easy-to-use toolkit for retrieval-based Chatbot Recent Activity Our released RRS corpus can be found here. Our released BERT-FP post-training checkpoi

GMFTBY 32 Nov 13, 2022
Template repository to build PyTorch projects from source on any version of PyTorch/CUDA/cuDNN.

The Ultimate PyTorch Source-Build Template Translations: 한국어 TL;DR PyTorch built from source can be x4 faster than a naïve PyTorch install. This repos

Joonhyung Lee/이준형 651 Dec 12, 2022
基于pytorch构建cyclegan示例

cyclegan-demo 基于Pytorch构建CycleGAN示例 如何运行 准备数据集 将数据集整理成4个文件,分别命名为 trainA, trainB:训练集,A、B代表两类图片 testA, testB:测试集,A、B代表两类图片 例如 D:\CODE\CYCLEGAN-DEMO\DATA

Koorye 3 Oct 18, 2022
Anti-Adversarially Manipulated Attributions for Weakly and Semi-Supervised Semantic Segmentation (CVPR 2021)

Anti-Adversarially Manipulated Attributions for Weakly and Semi-Supervised Semantic Segmentation Input Image Initial CAM Successive Maps with adversar

Jungbeom Lee 110 Dec 07, 2022
A framework for Quantification written in Python

QuaPy QuaPy is an open source framework for quantification (a.k.a. supervised prevalence estimation, or learning to quantify) written in Python. QuaPy

41 Dec 14, 2022
Python3 / PyTorch implementation of the following paper: Fine-grained Semantics-aware Representation Enhancement for Self-supervisedMonocular Depth Estimation. ICCV 2021 (oral)

FSRE-Depth This is a Python3 / PyTorch implementation of FSRE-Depth, as described in the following paper: Fine-grained Semantics-aware Representation

77 Dec 28, 2022
Prometheus exporter for Cisco Unified Computing System (UCS) Manager

prometheus-ucs-exporter Overview Use metrics from the UCS API to export relevant metrics to Prometheus This repository is a fork of Drew Stinnett's or

Marshall Wace 6 Nov 07, 2022
The official implementation of the research paper "DAG Amendment for Inverse Control of Parametric Shapes"

DAG Amendment for Inverse Control of Parametric Shapes This repository is the official Blender implementation of the paper "DAG Amendment for Inverse

Elie Michel 157 Dec 26, 2022
PyTorch code of my ICDAR 2021 paper Vision Transformer for Fast and Efficient Scene Text Recognition (ViTSTR)

Vision Transformer for Fast and Efficient Scene Text Recognition (ICDAR 2021) ViTSTR is a simple single-stage model that uses a pre-trained Vision Tra

Rowel Atienza 198 Dec 27, 2022