E2VID_ROS - E2VID_ROS: E2VID to a real-time system

Overview

E2VID_ROS

Introduce

We extend E2VID to a real-time system. Because Python ROS callback has a large delay, we use dvs_event_server to transport "dvs/events" ROS topic to Python.

Install with Anaconda

In addition to dependencies E2VID needs, some packages are needed. Enter the E2VID conda environment, and then

pip install rospkg
pip install pyzmq
pip install protobuf

Usage

Adjust the event camera parameter according to your camera and surroundings in run_reconstruction_ros.py

self.width = 346
self.height = 260
self.event_window_size = 30000

Adjust the event topic name and the event window size in dvs_event_server.launch

<param name="/event_topic_name" type="str" value="/dvs/events"/>
<param name="/event_window_size" type="int" value="30000" />

Make sure the ip address and the port are the same as the dvs_event_server.launch in run_reconstruction_ros.py

self.socket.connect('tcp://127.0.0.1:10001')
<param name="/ip_address" type="str" value="127.0.0.1" />
<param name="/port" type="str" value="10001" />

First run dvs_event_server

roslaunch dvs_event_server dvs_event_server.launch

And then run E2VID_ROS (when closing, run_reconstruction_ros.py should be closed before dvs_event_server)

python run_reconstruction_ros.py

You can play the rosbag or use your own camera

rosbag play example.bag

You can use dvs_renderer or dv_ros to compare the reconstructed frame with the event frame.

You can use rqt_image_view or rviz to visualize the /e2vid/image topic




High Speed and High Dynamic Range Video with an Event Camera

High Speed and High Dynamic Range Video with an Event Camera

This is the code for the paper High Speed and High Dynamic Range Video with an Event Camera by Henri Rebecq, Rene Ranftl, Vladlen Koltun and Davide Scaramuzza:

You can find a pdf of the paper here. If you use any of this code, please cite the following publications:

@Article{Rebecq19pami,
  author        = {Henri Rebecq and Ren{\'{e}} Ranftl and Vladlen Koltun and Davide Scaramuzza},
  title         = {High Speed and High Dynamic Range Video with an Event Camera},
  journal       = {{IEEE} Trans. Pattern Anal. Mach. Intell. (T-PAMI)},
  url           = {http://rpg.ifi.uzh.ch/docs/TPAMI19_Rebecq.pdf},
  year          = 2019
}
@Article{Rebecq19cvpr,
  author        = {Henri Rebecq and Ren{\'{e}} Ranftl and Vladlen Koltun and Davide Scaramuzza},
  title         = {Events-to-Video: Bringing Modern Computer Vision to Event Cameras},
  journal       = {{IEEE} Conf. Comput. Vis. Pattern Recog. (CVPR)},
  year          = 2019
}

Install

Dependencies:

Install with Anaconda

The installation requires Anaconda3. You can create a new Anaconda environment with the required dependencies as follows (make sure to adapt the CUDA toolkit version according to your setup):

conda create -n E2VID
conda activate E2VID
conda install pytorch torchvision cudatoolkit=10.0 -c pytorch
conda install pandas
conda install -c conda-forge opencv

Run

  • Download the pretrained model:
wget "http://rpg.ifi.uzh.ch/data/E2VID/models/E2VID_lightweight.pth.tar" -O pretrained/E2VID_lightweight.pth.tar
  • Download an example file with event data:
wget "http://rpg.ifi.uzh.ch/data/E2VID/datasets/ECD_IJRR17/dynamic_6dof.zip" -O data/dynamic_6dof.zip

Before running the reconstruction, make sure the conda environment is sourced:

conda activate E2VID
  • Run reconstruction:
python run_reconstruction.py \
  -c pretrained/E2VID_lightweight.pth.tar \
  -i data/dynamic_6dof.zip \
  --auto_hdr \
  --display \
  --show_events

Parameters

Below is a description of the most important parameters:

Main parameters

  • --window_size / -N (default: None) Number of events per window. This is the parameter that has the most influence of the image reconstruction quality. If set to None, this number will be automatically computed based on the sensor size, as N = width * height * num_events_per_pixel (see description of that parameter below). Ignored if --fixed_duration is set.
  • --fixed_duration (default: False) If True, will use windows of events with a fixed duration (i.e. a fixed output frame rate).
  • --window_duration / -T (default: 33 ms) Duration of each event window, in milliseconds. The value of this parameter has strong influence on the image reconstruction quality. Its value may need to be adapted to the dynamics of the scene. Ignored if --fixed_duration is not set.
  • --Imin (default: 0.0), --Imax (default: 1.0): linear tone mapping is performed by normalizing the output image as follows: I = (I - Imin) / (Imax - Imin). If --auto_hdr is set to True, --Imin and --Imax will be automatically computed as the min (resp. max) intensity values.
  • --auto_hdr (default: False) Automatically compute --Imin and --Imax. Disabled when --color is set.
  • --color (default: False): if True, will perform color reconstruction as described in the paper. Only use this with a color event camera such as the Color DAVIS346.

Output parameters

  • --output_folder: path of the output folder. If not set, the image reconstructions will not be saved to disk.
  • --dataset_name: name of the output folder directory (default: 'reconstruction').

Display parameters

  • --display (default: False): display the video reconstruction in real-time in an OpenCV window.
  • --show_events (default: False): show the input events side-by-side with the reconstruction. If --output_folder is set, the previews will also be saved to disk in /path/to/output/folder/events.

Additional parameters

  • --num_events_per_pixel (default: 0.35): Parameter used to automatically estimate the window size based on the sensor size. The value of 0.35 was chosen to correspond to ~ 15,000 events on a 240x180 sensor such as the DAVIS240C.
  • --no-normalize (default: False): Disable event tensor normalization: this will improve speed a bit, but might degrade the image quality a bit.
  • --no-recurrent (default: False): Disable the recurrent connection (i.e. do not maintain a state). For experimenting only, the results will be flickering a lot.
  • --hot_pixels_file (default: None): Path to a file specifying the locations of hot pixels (such a file can be obtained with this tool for example). These pixels will be ignored (i.e. zeroed out in the event tensors).

Example datasets

We provide a list of example (publicly available) event datasets to get started with E2VID.

Working with ROS

Because PyTorch recommends Python 3 and ROS is only compatible with Python2, it is not straightforward to have the PyTorch reconstruction code and ROS code running in the same environment. To make things easy, the reconstruction code we provide has no dependency on ROS, and simply read events from a text file or ZIP file. We provide convenience functions to convert ROS bags (a popular format for event datasets) into event text files. In addition, we also provide scripts to convert a folder containing image reconstructions back to a rosbag (or to append image reconstructions to an existing rosbag).

Note: it is not necessary to have a sourced conda environment to run the following scripts. However, ROS needs to be installed and sourced.

rosbag -> events.txt

To extract the events from a rosbag to a zip file containing the event data:

python scripts/extract_events_from_rosbag.py /path/to/rosbag.bag \
  --output_folder=/path/to/output/folder \
  --event_topic=/dvs/events

image reconstruction folder -> rosbag

python scripts/image_folder_to_rosbag.py \
  --datasets dynamic_6dof \
  --image_folder /path/to/image/folder \
  --output_folder /path/to/output_folder \
  --image_topic /dvs/image_reconstructed

Append image_reconstruction_folder to an existing rosbag

cd scripts
python embed_reconstructed_images_in_rosbag.py \
  --rosbag_folder /path/to/rosbag/folder \
  --datasets dynamic_6dof \
  --image_folder /path/to/image/folder \
  --output_folder /path/to/output_folder \
  --image_topic /dvs/image_reconstructed

Generating a video reconstruction (with a fixed framerate)

It can be convenient to convert an image folder to a video with a fixed framerate (for example for use in a video editing tool). You can proceed as follows:

export FRAMERATE=30
python resample_reconstructions.py -i /path/to/input_folder -o /tmp/resampled -r $FRAMERATE
ffmpeg -framerate $FRAMERATE -i /tmp/resampled/frame_%010d.png video_"$FRAMERATE"Hz.mp4

Acknowledgements

This code borrows from the following open source projects, whom we would like to thank:

Owner
Robin Shaun
Aerospace Engineering
Robin Shaun
Official implementation of DreamerPro: Reconstruction-Free Model-Based Reinforcement Learning with Prototypical Representations in TensorFlow 2

DreamerPro Official implementation of DreamerPro: Reconstruction-Free Model-Based Reinforcement Learning with Prototypical Representations in TensorFl

22 Nov 01, 2022
Implementation of Shape and Electrostatic similarity metric in deepFMPO.

DeepFMPO v3D Code accompanying the paper "On the value of using 3D-shape and electrostatic similarities in deep generative methods". The paper can be

34 Nov 28, 2022
A PyTorch version of You Only Look at One-level Feature object detector

PyTorch_YOLOF A PyTorch version of You Only Look at One-level Feature object detector. The input image must be resized to have their shorter side bein

Jianhua Yang 25 Dec 30, 2022
FastFCN: Rethinking Dilated Convolution in the Backbone for Semantic Segmentation.

FastFCN: Rethinking Dilated Convolution in the Backbone for Semantic Segmentation [Project] [Paper] [arXiv] [Home] Official implementation of FastFCN:

Wu Huikai 815 Dec 29, 2022
Bayesian regularization for functional graphical models.

BayesFGM Paper: Jiajing Niu, Andrew Brown. Bayesian regularization for functional graphical models. Requirements R version 3.6.3 and up Python 3.6 and

0 Oct 07, 2021
Vehicle Detection Using Deep Learning and YOLO Algorithm

VehicleDetection Vehicle Detection Using Deep Learning and YOLO Algorithm Dataset take or find vehicle images for create a special dataset for fine-tu

Maryam Boneh 96 Jan 05, 2023
Towards Boosting the Accuracy of Non-Latin Scene Text Recognition

Convolutional Recurrent Neural Network + CTCLoss | STAR-Net Code for paper "Towards Boosting the Accuracy of Non-Latin Scene Text Recognition" Depende

Sanjana Gunna 7 Aug 07, 2022
BOOKSUM: A Collection of Datasets for Long-form Narrative Summarization

BOOKSUM: A Collection of Datasets for Long-form Narrative Summarization Authors: Wojciech Kryściński, Nazneen Rajani, Divyansh Agarwal, Caiming Xiong,

Salesforce 125 Dec 31, 2022
Source code for "Progressive Transformers for End-to-End Sign Language Production" (ECCV 2020)

Progressive Transformers for End-to-End Sign Language Production Source code for "Progressive Transformers for End-to-End Sign Language Production" (B

58 Dec 21, 2022
FewBit — a library for memory efficient training of large neural networks

FewBit FewBit — a library for memory efficient training of large neural networks. Its efficiency originates from storage optimizations applied to back

24 Oct 22, 2022
Automatic Calibration for Non-repetitive Scanning Solid-State LiDAR and Camera Systems

ACSC Automatic extrinsic calibration for non-repetitive scanning solid-state LiDAR and camera systems. System Architecture 1. Dependency Tested with U

KINO 192 Dec 13, 2022
This app is a simple example of using Strealit to create a financial data web app.

Streamlit Demo: Finance Chart This app is a simple example of using Streamlit to create a financial data web app. This demo use streamlit, pandas and

91 Jan 02, 2023
An offline deep reinforcement learning library

d3rlpy: An offline deep reinforcement learning library d3rlpy is an offline deep reinforcement learning library for practitioners and researchers. imp

Takuma Seno 817 Jan 02, 2023
Source code for the paper: Variance-Aware Machine Translation Test Sets (NeurIPS 2021 Datasets and Benchmarks Track)

Variance-Aware-MT-Test-Sets Variance-Aware Machine Translation Test Sets License See LICENSE. We follow the data licensing plan as the same as the WMT

NLP2CT Lab, University of Macau 5 Dec 21, 2021
PyTorch implementation for "HyperSPNs: Compact and Expressive Probabilistic Circuits", NeurIPS 2021

HyperSPN This repository contains code for the paper: HyperSPNs: Compact and Expressive Probabilistic Circuits "HyperSPNs: Compact and Expressive Prob

8 Nov 08, 2022
Pytorch Implementation of "Diagonal Attention and Style-based GAN for Content-Style disentanglement in image generation and translation" (ICCV 2021)

DiagonalGAN Official Pytorch Implementation of "Diagonal Attention and Style-based GAN for Content-Style Disentanglement in Image Generation and Trans

32 Dec 06, 2022
Source code for the paper "PLOME: Pre-training with Misspelled Knowledge for Chinese Spelling Correction" in ACL2021

PLOME:Pre-training with Misspelled Knowledge for Chinese Spelling Correction (ACL2021) This repository provides the code and data of the work in ACL20

197 Nov 26, 2022
The official implementation of the CVPR 2021 paper FAPIS: a Few-shot Anchor-free Part-based Instance Segmenter

FAPIS The official implementation of the CVPR 2021 paper FAPIS: a Few-shot Anchor-free Part-based Instance Segmenter Introduction This repo is primari

Khoi Nguyen 8 Dec 11, 2022
4th place solution for the SIGIR 2021 challenge.

SIGIR-2021 (Tinkoff.AI) How to start Download train and test data: https://sigir-ecom.github.io/data-task.html Place it under sigir-2021/data/. Run py

Tinkoff.AI 4 Jul 01, 2022
A toolkit for Lagrangian-based constrained optimization in Pytorch

Cooper About Cooper is a toolkit for Lagrangian-based constrained optimization in Pytorch. This library aims to encourage and facilitate the study of

Cooper 34 Jan 01, 2023