The project page of paper: Architecture disentanglement for deep neural networks [ICCV 2021, oral]

Related tags

Deep LearningNAD
Overview

This is the project page for the paper:

Architecture Disentanglement for Deep Neural Networks,
Jie Hu, Liujuan Cao, Tong Tong, Ye Qixiang, ShengChuan Zhang, Ke Li, Feiyue Huang, Ling Shao, Rongrong Ji

Updates

  • (2021.11.18) The project page for NAD is avaliable.

Pretrained Models For Place

ImageNet pretrained model can be downloaded online. As for the place dataset, we trained the four networks on place365 dataset. The pretrained model can be download at google driver, they should be placed at the folder NAD/pretrain_model/

Requirements

  • Python=3.7
  • PyTorch=1.7.1, torchvision=0.8.2, cudatoolkit=10.1

Steps (vgg16 and imagenet for example)

  1. Install Anaconda, create a virtual environment and install the requirements above. And then
git clone https://github.com/hujiecpp/NAD
  1. Download ImageNet dataset and Place365 dataset and then modify the NAD/tools/config.py. As for the Place365 dataset, use 'NAD/tools/make_dataset.py' to convert it to a suitable format.

  2. Find the path for all categories at network

CUDA_VISIBLE_DEVICES=0 python findpath.py --net vgg16 --dataset imagenet --beta 4.5
  1. Test one image using its path
CUDA_VISIBLE_DEVICES=0 python cam_1x1.py --model vgg16 --dataset imagenet --epoch 20 --mask_rate 0.05
  1. Generate 2x2 images randomly and test path hit rate for each layer
CUDA_VISIBLE_DEVICES=0 python cam_2x2.py --model vgg16 --dataset imagenet --epoch 20 --mask_rate 0.05
  1. Calculate the top3 substructure similarity for each class and compare it with the result of top3 classified by the classification network
CUDA_VISIBLE_DEVICES=0 python similarSubArch.py --model vgg16 --dataset imagenet --epoch 20

Citation

If our paper helps your research, please cite it in your publications:

@inproceedings{hu2021architecture,
  title={Architecture disentanglement for deep neural networks},
  author={Hu, Jie and Cao, Liujuan and Tong, Tong and Ye, Qixiang and Zhang, Shengchuan and Li, Ke and Huang, Feiyue and Shao, Ling and Ji, Rongrong},
  booktitle={Proceedings of the IEEE/CVF International Conference on Computer Vision},
  pages={672--681},
  year={2021}
}
Owner
Jie Hu
Phd Student, Xiamen University.
Jie Hu
Re-implement CycleGAN in Tensorlayer

CycleGAN_Tensorlayer Re-implement CycleGAN in TensorLayer Original CycleGAN Improved CycleGAN with resize-convolution Prerequisites: TensorLayer Tenso

89 Aug 15, 2022
A collection of resources on GAN Inversion.

This repo is a collection of resources on GAN inversion, as a supplement for our survey

Pyeventbus: a publish/subscribe event bus

pyeventbus pyeventbus is a publish/subscribe event bus for Python 2.7. simplifies the communication between python classes decouples event senders and

15 Apr 21, 2022
(NeurIPS 2021) Realistic Evaluation of Transductive Few-Shot Learning

Realistic evaluation of transductive few-shot learning Introduction This repo contains the code for our NeurIPS 2021 submitted paper "Realistic evalua

Olivier Veilleux 14 Dec 13, 2022
Source code for paper "Deep Superpixel-based Network for Blind Image Quality Assessment"

DSN-IQA Source code for paper "Deep Superpixel-based Network for Blind Image Quality Assessment" Requirements Python =3.8.0 Pytorch =1.7.1 Usage wit

7 Oct 13, 2022
SegNet-like Autoencoders in TensorFlow

SegNet SegNet is a TensorFlow implementation of the segmentation network proposed by Kendall et al., with cool features like strided deconvolution, a

Andrea Azzini 66 Nov 05, 2021
PyMove is a Python library to simplify queries and visualization of trajectories and other spatial-temporal data

Use PyMove and go much further Information Package Status License Python Version Platforms Build Status PyPi version PyPi Downloads Conda version Cond

Insight Data Science Lab 64 Nov 15, 2022
Official PyTorch Implementation of Hypercorrelation Squeeze for Few-Shot Segmentation, arXiv 2021

Hypercorrelation Squeeze for Few-Shot Segmentation This is the implementation of the paper "Hypercorrelation Squeeze for Few-Shot Segmentation" by Juh

Juhong Min 165 Dec 28, 2022
Over-the-Air Ensemble Inference with Model Privacy

Over-the-Air Ensemble Inference with Model Privacy This repository contains simulations for our private ensemble inference method. Installation Instal

Selim Firat Yilmaz 1 Jun 29, 2022
Labelbox is the fastest way to annotate data to build and ship artificial intelligence applications

Labelbox Labelbox is the fastest way to annotate data to build and ship artificial intelligence applications. Use this github repository to help you s

labelbox 1.7k Dec 29, 2022
Official PyTorch implementation of Spatial Dependency Networks.

Spatial Dependency Networks: Neural Layers for Improved Generative Image Modeling Đorđe Miladinović   Aleksandar Stanić   Stefan Bauer   Jürgen Schmid

Djordje Miladinovic 34 Jan 19, 2022
Transformers4Rec is a flexible and efficient library for sequential and session-based recommendation, available for both PyTorch and Tensorflow.

Transformers4Rec is a flexible and efficient library for sequential and session-based recommendation, available for both PyTorch and Tensorflow.

730 Jan 09, 2023
Sionna: An Open-Source Library for Next-Generation Physical Layer Research

Sionna: An Open-Source Library for Next-Generation Physical Layer Research Sionna™ is an open-source Python library for link-level simulations of digi

NVIDIA Research Projects 313 Dec 22, 2022
Selfplay In MultiPlayer Environments

This project allows you to train AI agents on custom-built multiplayer environments, through self-play reinforcement learning.

200 Jan 08, 2023
Music Classification: Beyond Supervised Learning, Towards Real-world Applications

Music Classification: Beyond Supervised Learning, Towards Real-world Applications

104 Dec 15, 2022
Repository for the paper "PoseAug: A Differentiable Pose Augmentation Framework for 3D Human Pose Estimation", CVPR 2021.

PoseAug: A Differentiable Pose Augmentation Framework for 3D Human Pose Estimation Code repository for the paper: PoseAug: A Differentiable Pose Augme

Pyjcsx 328 Dec 17, 2022
Simple data balancing baselines for worst-group-accuracy benchmarks.

BalancingGroups Code to replicate the experimental results from Simple data balancing baselines achieve competitive worst-group-accuracy. Replicating

Meta Research 29 Dec 02, 2022
Enhancing Column Generation by a Machine-Learning-BasedPricing Heuristic for Graph Coloring

Enhancing Column Generation by a Machine-Learning-BasedPricing Heuristic for Graph Coloring (to appear at AAAI 2022) We propose a machine-learning-bas

YunzhuangS 2 May 02, 2022
Repository for open research on optimizers.

Open Optimizers Repository for open research on optimizers. This is a test in sharing research/exploration as it happens. If you use anything from thi

Ariel Ekgren 6 Jun 24, 2022