An experimentation and research platform to investigate the interaction of automated agents in an abstract simulated network environments.

Overview

CyberBattleSim

April 8th, 2021: See the announcement on the Microsoft Security Blog.

CyberBattleSim is an experimentation research platform to investigate the interaction of automated agents operating in a simulated abstract enterprise network environment. The simulation provides a high-level abstraction of computer networks and cyber security concepts. Its Python-based Open AI Gym interface allows for the training of automated agents using reinforcement learning algorithms.

The simulation environment is parameterized by a fixed network topology and a set of vulnerabilities that agents can utilize to move laterally in the network. The goal of the attacker is to take ownership of a portion of the network by exploiting vulnerabilities that are planted in the computer nodes. While the attacker attempts to spread throughout the network, a defender agent watches the network activity and tries to detect any attack taking place and mitigate the impact on the system by evicting the attacker. We provide a basic stochastic defender that detects and mitigates ongoing attacks based on pre-defined probabilities of success. We implement mitigation by re-imaging the infected nodes, a process abstractly modeled as an operation spanning over multiple simulation steps.

To compare the performance of the agents we look at two metrics: the number of simulation steps taken to attain their goal and the cumulative rewards over simulation steps across training epochs.

Project goals

We view this project as an experimentation platform to conduct research on the interaction of automated agents in abstract simulated network environments. By open-sourcing it, we hope to encourage the research community to investigate how cyber-agents interact and evolve in such network environments.

The simulation we provide is admittedly simplistic, but this has advantages. Its highly abstract nature prohibits direct application to real-world systems thus providing a safeguard against potential nefarious use of automated agents trained with it. At the same time, its simplicity allows us to focus on specific security aspects we aim to study and quickly experiment with recent machine learning and AI algorithms.

For instance, the current implementation focuses on the lateral movement cyber-attacks techniques, with the hope of understanding how network topology and configuration affects them. With this goal in mind, we felt that modeling actual network traffic was not necessary. This is just one example of a significant limitation in our system that future contributions might want to address.

On the algorithmic side, we provide some basic agents as starting points, but we would be curious to find out how state-of-the-art reinforcement learning algorithms compare to them. We found that the large action space intrinsic to any computer system is a particular challenge for Reinforcement Learning, in contrast to other applications such as video games or robot control. Training agents that can store and retrieve credentials is another challenge faced when applying RL techniques where agents typically do not feature internal memory. These are other areas of research where the simulation could be used for benchmarking purposes.

Other areas of interest include the responsible and ethical use of autonomous cyber-security systems: How to design an enterprise network that gives an intrinsic advantage to defender agents? How to conduct safe research aimed at defending enterprises against autonomous cyber-attacks while preventing nefarious use of such technology?

Documentation

Read the Quick introduction to the project.

Build status

Type Branch Status
CI master .github/workflows/ci.yml
Docker image master .github/workflows/build-container.yml

Benchmark

See Benchmark.

Setting up a dev environment

It is strongly recommended to work under a Linux environment, either directly or via WSL on Windows. Running Python on Windows directly should work but is not supported anymore.

Start by checking out the repository:

git clone https://github.com/microsoft/CyberBattleSim.git

On Linux or WSL

The instructions were tested on a Linux Ubuntu distribution (both native and via WSL). Run the following command to set-up your dev environment and install all the required dependencies (apt and pip packages):

./init.sh

The script installs python3.8 if not present. If you are running a version of Ubuntu older than 20, it will automatically add an additional apt repository to install python3.8.

The script will create a virtual Python environment under a venv subdirectory, you can then run Python with venv/bin/python.

Note: If you prefer Python from a global installation instead of a virtual environment then you can skip the creation of the virtual environment by running the script with ./init.sh -n. This will instead install all the Python packages on a system-wide installation of Python 3.8.

Windows Subsystem for Linux

The supported dev environment on Windows is via WSL. You first need to install an Ubuntu WSL distribution on your Windows machine, and then proceed with the Linux instructions (next section).

Git authentication from WSL

To authenticate with Git, you can either use SSH-based authentication or alternatively use the credential-helper trick to automatically generate a PAT token. The latter can be done by running the following command under WSL (more info here):

git config --global credential.helper "/mnt/c/Program\ Files/Git/mingw64/libexec/git-core/git-credential-manager.exe"

Docker on WSL

To run your environment within a docker container, we recommend running docker via Windows Subsystem on Linux (WSL) using the following instructions: Installing Docker on Windows under WSL).

Windows (unsupported)

This method is not maintained anymore, please prefer instead running under a WSL subsystem Linux environment. But if you insist you want to start by installing Python 3.8 then in a Powershell prompt run the ./init.ps1 script.

Getting started quickly using Docker

The quickest method to get up and running is via the Docker container.

NOTE: For licensing reasons, we do not publicly redistribute any build artifact. In particular, the docker registry spinshot.azurecr.io referred to in the commands below is kept private to the project maintainers only.

As a workaround, you can recreate the docker image yourself using the provided Dockerfile, publish the resulting image to your own docker registry and replace the registry name in the commands below.

Running from Docker registry

commit=7c1f8c80bc53353937e3c69b0f5f799ebb2b03ee
docker login spinshot.azurecr.io
docker pull spinshot.azurecr.io/cyberbattle:$commit
docker run -it spinshot.azurecr.io/cyberbattle:$commit cyberbattle/agents/baseline/run.py

Recreating the Docker image

docker build -t cyberbattle:1.1 .
docker run -it -v "$(pwd)":/source --rm cyberbattle:1.1 cyberbattle/agents/baseline/run.py

Check your environment

Run the following command to run a simulation with a baseline RL agent:

python cyberbattle/agents/baseline/run.py --training_episode_count 1 --eval_episode_count 1 --iteration_count 10 --rewardplot_with 80  --chain_size=20 --ownership_goal 1.0

If everything is setup correctly you should get an output that looks like this:

torch cuda available=True
###### DQL
Learning with: episode_count=1,iteration_count=10,ϵ=0.9,ϵ_min=0.1, ϵ_expdecay=5000,γ=0.015, lr=0.01, replaymemory=10000,
batch=512, target_update=10
  ## Episode: 1/1 'DQL' ϵ=0.9000, γ=0.015, lr=0.01, replaymemory=10000,
batch=512, target_update=10
Episode 1|Iteration 10|reward:  139.0|Elapsed Time: 0:00:00|###################################################################|
###### Random search
Learning with: episode_count=1,iteration_count=10,ϵ=1.0,ϵ_min=0.0,
  ## Episode: 1/1 'Random search' ϵ=1.0000,
Episode 1|Iteration 10|reward:  194.0|Elapsed Time: 0:00:00|###################################################################|
simulation ended
Episode duration -- DQN=Red, Random=Green
   10.00  ┼
Cumulative rewards -- DQN=Red, Random=Green
  194.00  ┼      ╭──╴
  174.60  ┤      │
  155.20  ┤╭─────╯
  135.80  ┤│     ╭──╴
  116.40  ┤│     │
   97.00  ┤│    ╭╯
   77.60  ┤│    │
   58.20  ┤╯ ╭──╯
   38.80  ┤  │
   19.40  ┤  │
    0.00  ┼──╯

Jupyter notebooks

To quickly get familiar with the project, you can open one of the provided Jupyter notebooks to play interactively with the gym environments. Just start jupyter with jupyter notebook, or venv/bin/jupyter notebook if you are using a virtual environment setup.

How to instantiate the Gym environments?

The following code shows how to create an instance of the OpenAI Gym environment CyberBattleChain-v0, an environment based on a chain-like network structure, with 10 nodes (size=10) where the agent's goal is to either gain full ownership of the network (own_atleast_percent=1.0) or break the 80% network availability SLA (maintain_sla=0.80), while the network is being monitored and protected by the basic probalistically-modelled defender (defender_agent=ScanAndReimageCompromisedMachines):

import cyberbattle._env.cyberbattle_env

cyberbattlechain_defender =
  gym.make('CyberBattleChain-v0',
      size=10,
      attacker_goal=AttackerGoal(
          own_atleast=0,
          own_atleast_percent=1.0
      ),
      defender_constraint=DefenderConstraint(
          maintain_sla=0.80
      ),
      defender_agent=ScanAndReimageCompromisedMachines(
          probability=0.6,
          scan_capacity=2,
          scan_frequency=5))

To try other network topologies, take example on chainpattern.py to define your own set of machines and vulnerabilities, then add an entry in the module initializer to declare and register the Gym environment.

Contributing

This project welcomes contributions and suggestions. Most contributions require you to agree to a Contributor License Agreement (CLA) declaring that you have the right to, and actually do, grant us the rights to use your contribution. For details, visit https://cla.opensource.microsoft.com.

When you submit a pull request, a CLA bot will automatically determine whether you need to provide a CLA and decorate the PR appropriately (e.g., status check, comment). Simply follow the instructions provided by the bot. You will only need to do this once across all repos using our CLA.

This project has adopted the Microsoft Open Source Code of Conduct. For more information see the Code of Conduct FAQ or contact [email protected] with any additional questions or comments.

Ideas for contributions

Here are some ideas on how to contribute: enhance the simulation (event-based, refined the simulation, …), train an RL algorithm on the existing simulation, implement benchmark to evaluate and compare novelty of agents, add more network generative modes to train RL-agent on, contribute to the doc, fix bugs.

See also the wiki for more ideas.

Citing this project

@misc{msft:cyberbattlesim,
  Author = {Microsoft Defender Research Team.}
  Note = {Created by Christian Seifert, Michael Betser, William Blum, James Bono, Kate Farris, Emily Goren, Justin Grana, Kristian Holsheimer, Brandon Marken, Joshua Neil, Nicole Nichols, Jugal Parikh, Haoran Wei.},
  Publisher = {GitHub},
  Howpublished = {\url{https://github.com/microsoft/cyberbattlesim}},
  Title = {CyberBattleSim},
  Year = {2021}
}

Note on privacy

This project does not include any customer data. The provided models and network topologies are purely fictitious. Users of the provided code provide all the input to the simulation and must have the necessary permissions to use any provided data.

Trademarks

This project may contain trademarks or logos for projects, products, or services. Authorized use of Microsoft trademarks or logos is subject to and must follow Microsoft's Trademark & Brand Guidelines. Use of Microsoft trademarks or logos in modified versions of this project must not cause confusion or imply Microsoft sponsorship. Any use of third-party trademarks or logos are subject to those third-party's policies.

Owner
Microsoft
Open source projects and samples from Microsoft
Microsoft
Code for Ditto: Building Digital Twins of Articulated Objects from Interaction

Ditto: Building Digital Twins of Articulated Objects from Interaction Zhenyu Jiang, Cheng-Chun Hsu, Yuke Zhu CVPR 2022, Oral Project | arxiv News 2022

UT Robot Perception and Learning Lab 78 Dec 22, 2022
A ssl analyzer which could analyzer target domain's certificate.

ssl_analyzer A ssl analyzer which could analyzer target domain's certificate. Analyze the domain name ssl certificate information according to the inp

vincent 17 Dec 12, 2022
CapsuleVOS: Semi-Supervised Video Object Segmentation Using Capsule Routing

CapsuleVOS This is the code for the ICCV 2019 paper CapsuleVOS: Semi-Supervised Video Object Segmentation Using Capsule Routing. Arxiv Link: https://a

53 Oct 27, 2022
PyTorch implementation of TSception V2 using DEAP dataset

TSception This is the PyTorch implementation of TSception V2 using DEAP dataset in our paper: Yi Ding, Neethu Robinson, Su Zhang, Qiuhao Zeng, Cuntai

Yi Ding 27 Dec 15, 2022
This repository contains the segmentation user interface from the OpenSurfaces project, extracted as a lightweight tool

OpenSurfaces Segmentation UI This repository contains the segmentation user interface from the OpenSurfaces project, extracted as a lightweight tool.

Sean Bell 66 Jul 11, 2022
This is a tensorflow-based rotation detection benchmark, also called AlphaRotate.

AlphaRotate: A Rotation Detection Benchmark using TensorFlow Abstract AlphaRotate is maintained by Xue Yang with Shanghai Jiao Tong University supervi

yangxue 972 Jan 05, 2023
OpenPCDet Toolbox for LiDAR-based 3D Object Detection.

OpenPCDet OpenPCDet is a clear, simple, self-contained open source project for LiDAR-based 3D object detection. It is also the official code release o

OpenMMLab 3.2k Dec 31, 2022
On-device speech-to-index engine powered by deep learning.

On-device speech-to-index engine powered by deep learning.

Picovoice 30 Nov 24, 2022
This is an official implementation of the CVPR2022 paper "Blind2Unblind: Self-Supervised Image Denoising with Visible Blind Spots".

Blind2Unblind: Self-Supervised Image Denoising with Visible Blind Spots Blind2Unblind Citing Blind2Unblind @inproceedings{wang2022blind2unblind, tit

demonsjin 58 Dec 06, 2022
Fuzzy Overclustering (FOC)

Fuzzy Overclustering (FOC) In real-world datasets, we need consistent annotations between annotators to give a certain ground-truth label. However, in

2 Nov 08, 2022
The code for our CVPR paper PISE: Person Image Synthesis and Editing with Decoupled GAN, Project Page, supp.

PISE The code for our CVPR paper PISE: Person Image Synthesis and Editing with Decoupled GAN, Project Page, supp. Requirement conda create -n pise pyt

jinszhang 110 Nov 21, 2022
MultiLexNorm 2021 competition system from ÚFAL

ÚFAL at MultiLexNorm 2021: Improving Multilingual Lexical Normalization by Fine-tuning ByT5 David Samuel & Milan Straka Charles University Faculty of

ÚFAL 13 Jun 28, 2022
Heart Arrhythmia Classification

This program takes and input of an ECG in European Data Format (EDF) and outputs the classification for heartbeats into normal vs different types of arrhythmia . It uses a deep learning model for cla

4 Nov 02, 2022
Implementation of ML models like Decision tree, Naive Bayes, Logistic Regression and many other

ML_Model_implementaion Implementation of ML models like Decision tree, Naive Bayes, Logistic Regression and many other dectree_model: Implementation o

Anshuman Dalai 3 Jan 24, 2022
Official code for our CVPR '22 paper "Dataset Distillation by Matching Training Trajectories"

Dataset Distillation by Matching Training Trajectories Project Page | Paper This repo contains code for training expert trajectories and distilling sy

George Cazenavette 256 Jan 05, 2023
Offline Reinforcement Learning with Implicit Q-Learning

Offline Reinforcement Learning with Implicit Q-Learning This repository contains the official implementation of Offline Reinforcement Learning with Im

Ilya Kostrikov 126 Jan 06, 2023
E2VID_ROS - E2VID_ROS: E2VID to a real-time system

E2VID_ROS Introduce We extend E2VID to a real-time system. Because Python ROS ca

Robin Shaun 7 Apr 17, 2022
Code for our method RePRI for Few-Shot Segmentation. Paper at http://arxiv.org/abs/2012.06166

Region Proportion Regularized Inference (RePRI) for Few-Shot Segmentation In this repo, we provide the code for our paper : "Few-Shot Segmentation Wit

Malik Boudiaf 138 Dec 12, 2022
Pretrained models for Jax/Haiku; MobileNet, ResNet, VGG, Xception.

Pre-trained image classification models for Jax/Haiku Jax/Haiku Applications are deep learning models that are made available alongside pre-trained we

Alper Baris CELIK 14 Dec 20, 2022
Theano is a Python library that allows you to define, optimize, and evaluate mathematical expressions involving multi-dimensional arrays efficiently. It can use GPUs and perform efficient symbolic differentiation.

============================================================================================================ `MILA will stop developing Theano https:

9.6k Jan 06, 2023