ALFRED - A Benchmark for Interpreting Grounded Instructions for Everyday Tasks

Related tags

Deep Learningalfred
Overview

ALFRED

A Benchmark for Interpreting Grounded Instructions for Everyday Tasks
Mohit Shridhar, Jesse Thomason, Daniel Gordon, Yonatan Bisk,
Winson Han, Roozbeh Mottaghi, Luke Zettlemoyer, Dieter Fox
CVPR 2020

ALFRED (Action Learning From Realistic Environments and Directives), is a new benchmark for learning a mapping from natural language instructions and egocentric vision to sequences of actions for household tasks. Long composition rollouts with non-reversible state changes are among the phenomena we include to shrink the gap between research benchmarks and real-world applications.

For the latest updates, see: askforalfred.com

What more? Checkout ALFWorld – interactive TextWorld environments for ALFRED scenes!

Quickstart

Clone repo:

$ git clone https://github.com/askforalfred/alfred.git alfred
$ export ALFRED_ROOT=$(pwd)/alfred

Install requirements:

$ virtualenv -p $(which python3) --system-site-packages alfred_env # or whichever package manager you prefer
$ source alfred_env/bin/activate

$ cd $ALFRED_ROOT
$ pip install --upgrade pip
$ pip install -r requirements.txt

Download Trajectory JSONs and Resnet feats (~17GB):

$ cd $ALFRED_ROOT/data
$ sh download_data.sh json_feat

Train models:

$ cd $ALFRED_ROOT
$ python models/train/train_seq2seq.py --data data/json_feat_2.1.0 --model seq2seq_im_mask --dout exp/model:{model},name:pm_and_subgoals_01 --splits data/splits/oct21.json --gpu --batch 8 --pm_aux_loss_wt 0.1 --subgoal_aux_loss_wt 0.1

More Info

  • Dataset: Downloading full dataset, Folder structure, JSON structure.
  • Models: Training and Evaluation, File structure, Pre-trained models.
  • Data Generation: Generation, Replay Checks, Data Augmentation (high-res, depth, segementation masks etc).
  • Errata: Updated numbers for Goto subgoal evaluation.
  • THOR 2.1.0 Docs: Deprecated documentation from Ai2-THOR 2.1.0 release.
  • FAQ: Frequently Asked Questions.

SOTA Models

Open-source models that outperform the Seq2Seq baselines from ALFRED:

Episodic Transformer for Vision-and-Language Navigation
Alexander Pashevich, Cordelia Schmid, Chen Sun
Paper, Code

MOCA: A Modular Object-Centric Approach for Interactive Instruction Following
Kunal Pratap Singh*, Suvaansh Bhambri*, Byeonghwi Kim*, Roozbeh Mottaghi, Jonghyun Choi
Paper, Code

Contact Mohit to add your model here.

Prerequisites

  • Python 3
  • PyTorch 1.1.0
  • Torchvision 0.3.0
  • AI2THOR 2.1.0

See requirements.txt for all prerequisites

Hardware

Tested on:

  • GPU - GTX 1080 Ti (12GB)
  • CPU - Intel Xeon (Quad Core)
  • RAM - 16GB
  • OS - Ubuntu 16.04

Leaderboard

Run your model on test seen and unseen sets, and create an action-sequence dump of your agent:

$ cd $ALFRED_ROOT
$ python models/eval/leaderboard.py --model_path <model_path>/model.pth --model models.model.seq2seq_im_mask --data data/json_feat_2.1.0 --gpu --num_threads 5

This will create a JSON file, e.g. task_results_20191218_081448_662435.json, inside the <model_path> folder. Submit this JSON here: AI2 ALFRED Leaderboard. For rules and restrictions, see the getting started page.

Rules:

  1. You are only allowed to use RGB and language instructions (goal & step-by-step) as input for your agents. You cannot use additional depth, mask, metadata info etc. from the simulator on Test Seen and Test Unseen scenes. However, during training you are allowed to use additional info for auxiliary losses etc.
  2. During evaluation, agents are restricted to max_steps=1000 and max_fails=10. Do not change these settings in the leaderboard script; these modifications will not be reflected in the evaluation server.
  3. Pick a legible model name for the submission. Just "baseline" is not very descriptive.
  4. All submissions must be attempts to solve the ALFRED dataset.
  5. Answer the following questions in the description: a. Did you use additional sensory information from THOR as input, eg: depth, segmentation masks, class masks, panoramic images etc. during test-time? If so, please report them. b. Did you use the alignments between step-by-step instructions and expert action-sequences for training or testing? (no by default; the instructions are serialized into a single sentence)
  6. Share who you are: provide a team name and affiliation.
  7. (Optional) Share how you solved it: if possible, share information about how the task was solved. Link an academic paper or code repository if public.
  8. Only submit your own work: you may evaluate any model on the validation set, but must only submit your own work for evaluation against the test set.

Docker Setup

Install Docker and NVIDIA Docker.

Modify docker_build.py and docker_run.py to your needs.

Build

Build the image:

$ python scripts/docker_build.py 

Run (Local)

For local machines:

$ python scripts/docker_run.py
 
  source ~/alfred_env/bin/activate
  cd $ALFRED_ROOT

Run (Headless)

For headless VMs and Cloud-Instances:

$ python scripts/docker_run.py --headless 

  # inside docker
  tmux new -s startx  # start a new tmux session

  # start nvidia-xconfig (might have to run this twice)
  sudo nvidia-xconfig -a --use-display-device=None --virtual=1280x1024
  sudo nvidia-xconfig -a --use-display-device=None --virtual=1280x1024

  # start X server on DISPLAY 0
  # single X server should be sufficient for multiple instances of THOR
  sudo python ~/alfred/scripts/startx.py 0  # if this throws errors e.g "(EE) Server terminated with error (1)" or "(EE) already running ..." try a display > 0

  # detach from tmux shell
  # Ctrl+b then d

  # source env
  source ~/alfred_env/bin/activate
  
  # set DISPLAY variable to match X server
  export DISPLAY=:0

  # check THOR
  cd $ALFRED_ROOT
  python scripts/check_thor.py

  ###############
  ## (300, 300, 3)
  ## Everything works!!!

You might have to modify X_DISPLAY in gen/constants.py depending on which display you use.

Cloud Instance

ALFRED can be setup on headless machines like AWS or GoogleCloud instances. The main requirement is that you have access to a GPU machine that supports OpenGL rendering. Run startx.py in a tmux shell:

# start tmux session
$ tmux new -s startx 

# start X server on DISPLAY 0
# single X server should be sufficient for multiple instances of THOR
$ sudo python $ALFRED_ROOT/scripts/startx.py 0  # if this throws errors e.g "(EE) Server terminated with error (1)" or "(EE) already running ..." try a display > 0

# detach from tmux shell
# Ctrl+b then d

# set DISPLAY variable to match X server
$ export DISPLAY=:0

# check THOR
$ cd $ALFRED_ROOT
$ python scripts/check_thor.py

###############
## (300, 300, 3)
## Everything works!!!

You might have to modify X_DISPLAY in gen/constants.py depending on which display you use.

Also, checkout this guide: Setting up THOR on Google Cloud

Citation

If you find the dataset or code useful, please cite:

@inproceedings{ALFRED20,
  title ={{ALFRED: A Benchmark for Interpreting Grounded
           Instructions for Everyday Tasks}},
  author={Mohit Shridhar and Jesse Thomason and Daniel Gordon and Yonatan Bisk and
          Winson Han and Roozbeh Mottaghi and Luke Zettlemoyer and Dieter Fox},
  booktitle = {The IEEE Conference on Computer Vision and Pattern Recognition (CVPR)},
  year = {2020},
  url  = {https://arxiv.org/abs/1912.01734}
}

License

MIT License

Change Log

14/10/2020:

  • Added errata for Goto subgoal evaluation.

28/10/2020:

  • Added --use_templated_goals option to train with templated goals instead of human-annotated goal descriptions.

26/10/2020:

  • Fixed missing stop-frame in Modeling Quickstart dataset (json_feat_2.1.0.zip).

07/04/2020:

  • Updated download links. Switched from Google Cloud to AWS. Old download links will be deactivated.

28/03/2020:

  • Updated the mask-interaction API to use IoU scores instead of max pixel count for selecting objects.
  • Results table in the paper will be updated with new numbers.

Contact

Questions or issues? Contact [email protected]

Owner
ALFRED
ALFRED
Code for the ICML 2021 paper: "ViLT: Vision-and-Language Transformer Without Convolution or Region Supervision"

ViLT Code for the paper: "ViLT: Vision-and-Language Transformer Without Convolution or Region Supervision" Install pip install -r requirements.txt pip

Wonjae Kim 922 Jan 01, 2023
Official PyTorch(Geometric) implementation of DPGNN(DPGCN) in "Distance-wise Prototypical Graph Neural Network for Node Imbalance Classification"

DPGNN This repository is an official PyTorch(Geometric) implementation of DPGNN(DPGCN) in "Distance-wise Prototypical Graph Neural Network for Node Im

Yu Wang (Jack) 18 Oct 12, 2022
Course on computational design, non-linear optimization, and dynamics of soft systems at UIUC.

Computational Design and Dynamics of Soft Systems · This is a repository that contains the source code for generating the lecture notes, handouts, exe

Tejaswin Parthasarathy 4 Jul 21, 2022
Official repository of OFA. Paper: Unifying Architectures, Tasks, and Modalities Through a Simple Sequence-to-Sequence Learning Framework

Paper | Blog OFA is a unified multimodal pretrained model that unifies modalities (i.e., cross-modality, vision, language) and tasks (e.g., image gene

OFA Sys 1.4k Jan 08, 2023
Learning to Prompt for Vision-Language Models.

CoOp Paper: Learning to Prompt for Vision-Language Models Authors: Kaiyang Zhou, Jingkang Yang, Chen Change Loy, Ziwei Liu CoOp (Context Optimization)

Kaiyang 679 Jan 04, 2023
A more easy-to-use implementation of KPConv

A more easy-to-use implementation of KPConv This repo contains a more easy-to-use implementation of KPConv based on PyTorch. Introduction KPConv is a

Zheng Qin 35 Dec 14, 2022
Anomaly Detection Based on Hierarchical Clustering of Mobile Robot Data

We proposed a new approach to detect anomalies of mobile robot data. We investigate each data seperately with two clustering method hierarchical and k-means. There are two sub-method that we used for

Zekeriyya Demirci 1 Jan 09, 2022
unofficial pytorch implement of "Squareplus: A Softplus-Like Algebraic Rectifier"

SquarePlus (Pytorch implement) unofficial pytorch implement of "Squareplus: A Softplus-Like Algebraic Rectifier" SquarePlus Squareplus is a Softplus-L

SeeFun 3 Dec 29, 2021
Compositional Sketch Search

Compositional Sketch Search Official repository for ICIP 2021 Paper: Compositional Sketch Search Requirements Install and activate conda environment c

Alexander Black 8 Sep 06, 2021
Exposure Time Calculator (ETC) and radial velocity precision estimator for the Near InfraRed Planet Searcher (NIRPS) spectrograph

NIRPS-ETC Exposure Time Calculator (ETC) and radial velocity precision estimator for the Near InfraRed Planet Searcher (NIRPS) spectrograph February 2

Nolan Grieves 2 Sep 15, 2022
An Api for Emotion recognition.

PLAYEMO Playemo was built from the ground-up with Flask, a python tool that makes it easy for developers to build APIs. Use Cases Is Python your langu

greek geek 2 Jul 16, 2022
The official repo of the CVPR 2021 paper Group Collaborative Learning for Co-Salient Object Detection .

GCoNet The official repo of the CVPR 2021 paper Group Collaborative Learning for Co-Salient Object Detection . Trained model Download final_gconet.pth

Qi Fan 46 Nov 17, 2022
Pytorch implementation of U-Net, R2U-Net, Attention U-Net, and Attention R2U-Net.

pytorch Implementation of U-Net, R2U-Net, Attention U-Net, Attention R2U-Net U-Net: Convolutional Networks for Biomedical Image Segmentation https://a

leejunhyun 2k Jan 02, 2023
PyKaldi GOP-DNN on Epa-DB

PyKaldi GOP-DNN on Epa-DB This repository has the tools to run a PyKaldi GOP-DNN algorithm on Epa-DB, a database of non-native English speech by Spani

18 Dec 14, 2022
QICK: Quantum Instrumentation Control Kit

QICK: Quantum Instrumentation Control Kit The QICK is a kit of firmware and software to use the Xilinx RFSoC to control quantum systems. It consists o

81 Dec 15, 2022
Aggragrating Nested Transformer Official Jax Implementation

NesT is a simple method, which aggragrates nested local transformers on image blocks. The idea makes vision transformers attain better accuracy, data efficiency, and convergence on the ImageNet bench

Google Research 169 Dec 20, 2022
code for Multi-scale Matching Networks for Semantic Correspondence, ICCV

MMNet This repo is the official implementation of ICCV 2021 paper "Multi-scale Matching Networks for Semantic Correspondence.". Pre-requisite conda cr

joey zhao 25 Dec 12, 2022
[CVPR 2022 Oral] Crafting Better Contrastive Views for Siamese Representation Learning

Crafting Better Contrastive Views for Siamese Representation Learning (CVPR 2022 Oral) 2022-03-29: The paper was selected as a CVPR 2022 Oral paper! 2

249 Dec 28, 2022
Awesome Transformers in Medical Imaging

This repo supplements our Survey on Transformers in Medical Imaging Fahad Shamshad, Salman Khan, Syed Waqas Zamir, Muhammad Haris Khan, Munawar Hayat,

Fahad Shamshad 666 Jan 06, 2023
A simple rest api that classifies pneumonia infection weather it is Normal, Pneumonia Virus or Pneumonia Bacteria from a chest-x-ray image.

This is a simple rest api that classifies pneumonia infection weather it is Normal, Pneumonia Virus or Pneumonia Bacteria from a chest-x-ray image.

crispengari 3 Jan 08, 2022