Python library containing BART query generation and BERT-based Siamese models for neural retrieval.

Overview

Neural Retrieval

License

Embedding-based Zero-shot Retrieval through Query Generation leverages query synthesis over large corpuses of unlabeled text (such as Wikipedia) to pre-train siamese neural retrieval models. The resulting models significantly improve over previous BM25 baselines as well as state-of-the-art neural methods.

This package provides support for leveraging BART-large for query synthesis as well as code for training and finetuning a transformer based neural retriever. We also provide pre-generated synthetic queries on Wikipedia, and relevant pre-trained models that are obtainable through our download scripts.

Paper: Davis Liang*, Peng Xu*, Siamak Shakeri, Cicero Nogueira dos Santos, Ramesh Nallapati, Zhiheng Huang, Bing Xiang, Embedding-based Zero-shot Retrieval through Query Generation, 2020.

Getting Started

dependencies:

pip install torch torchvision transformers tqdm

running setup

python setup.py install --user

Package Version
torch >=1.6.0
transformers >=3.0.2
tqdm 4.43.0

WikiGQ dataset and Pretrained Neural Retrieval Model

  • WikiGQ: We process the Wikipedia 2016 dump and split it into passages of maximum length 100 with respecting the sentence boundaries. We synthesis over 100M synthetic queries using BART-large models. The split passages and synthetic queries files can be downloaded from here.
  • Siamese-BERT-base-model: We release our siamese-bert-base-model trained on WikiGQ dataset. The model files can be downloaded from here.

Training and Evaluation

Example: Natural Questions (NQ)

Here we take an example on Natural Questions data. Please download the simplified version of the training set and also use supplied simplify_nq_example function in simplify_nq_data.py to create the simplified dev set as well.

process the data

We provide the python script to convert the data into the format our model consumes.

NQ_DIR=YOUR PATH TO SIMPLIFIED NQ TRAIN AND DEV FILES
python data_processsing/nq_preprocess.py \
--trainfile $NQ_DIR/v1.0-simplified-train.jsonl.gz \
--devfile $NQ_DIR/v1.0-simplified-dev.jsonl.gz \
--passagefile $NQ_DIR/all_passages.jsonl \
--queries_trainfile $NQ_DIR/train_queries.json \
--answers_trainfile $NQ_DIR/train_anwers.json \
--queries_devfile $NQ_DIR/dev_queries.json \
--answers_devfile $NQ_DIR/dev_answers.json \
--qrelsfile $NQ_DIR/all_qrels.txt

training

OUTPUT_DIR=./output
mkdir -p $OUTPUT_DIR
python examples/neural_retrieval.py \
--query_len 64 \
--passage_len 288 \
--epochs 10 \
--sample_size 0 \
--batch_size 50 \
--embed_size 128 \
--print_iter 200 \
--eval_iter 0 \
--passagefile $NQ_DIR/all_passages.jsonl \
--train_queryfile $NQ_DIR/train_queries.json \
--train_answerfile $NQ_DIR/train_answers.json \
--save_model $OUTPUT_DIR/siamese_model.pt \
--share \
--gpu \
--num_nodes 1 \
--num_gpus 1 \
--train 

This will generate two model files in the OUTPUT_DIR: siamese_model.pt.doc and siamese_model.pt.query. They are exactly the same if your add --share during training.

Inference

  • Passage Embedding
python examples/neural_retrieval.py \
--query_len 64 \
--passage_len 288 \
--embed_size 128 \
--passagefile $NQ_DIR/all_passages.jsonl \
--gpu \
--num_nodes 1 \
--num_gpus 1 \
--local_rank 0 \
--doc_embed \
--doc_embed_file $OUTPUT_DIR/psg_embeds.csv \
--save_model $OUTPUT_DIR/siamese_model.pt 
  • Running Retrieval
python examples/neural_retrieval.py \
--query_len 64 \
--passage_len 288 \
--batch_size 100 \
--embed_size 128 \
--test_queryfile $NQ_DIR/dev_queries.json \
--gpu \
--num_nodes 1 \
--num_gpus 1 \
--local_rank 0 \
--topk 100 \
--query_embed \
--query_embed_file $OUTPUT_DIR/dev_query_embeds.csv \
--generate_retrieval \
--doc_embed_file $OUTPUT_DIR/psg_embeds.csv \
--save_model $OUTPUT_DIR/siamese_model.pt  \
--retrieval_outputfile $OUTPUT_DIR/dev_results.json
  • Evaluation

We use trec_eval to do the evaluation.

trec_eval $NQ_DIR/all_qrels.txt $OUTPUT_DIR/dev_results.json.txt -m recall 

BART Model for Query Generation

Finetune BART-QG Model on MSMARCO-PR dataset

MSMARCO_PATH=YOUR PATH TO MSMARCO FILES
QG_MODEL_OUTPUT=./qg_model_output
mkdir -p $QG_MODEL_OUTPUT
CUDA_VISIBLE_DEVICES=0,1,2,3 python examples/bart_qg.py \
--corpusfile $MSMARCO_PATH/collection.tsv \
--train_queryfile $MSMARCO_PATH/queries.train.tsv \
--train_qrelfile $MSMARCO_PATH/qrels.train.tsv \
--valid_queryfile $MSMARCO_PATH/queries.dev.tsv \
--valid_qrelfile $MSMARCO_PATH/qrels.dev.tsv \
--max_input_len 300 \
--max_output_len 100 \
--epochs 5 \
--lr 3e-5 \
--warmup 0.1 \
--wd 1e-3 \
--batch_size 24 \
--print_iter 100 \
--eval_iter 5000 \
--log ms_log \
--save_model $QG_MODEL_OUTPUT/best_qg.pt \
--gpu

Generate Synthetic Queries

As an example, we generate synthetic queries on NQ passages.

QG_OUTPUT_DIR=./qg_output
mkdir -p $QG_OUTPUT_DIR
python examples/bart_qg.py \
--test_corpusfile $QG_OUTPUT_DIR/all_passages.jsonl \
--test_outputfile $QG_OUTPUT_DIR/generated_questions.txt \
--generated_queriesfile $QG_OUTPUT_DIR/syn_queries.json \
--generated_answersfile $QG_OUTPUT_DIR/syn_answers.json \
--model_path $QG_MODEL_OUTPUT/best_qg_ms.pt \
--test \
--num_beams 5 \
--do_sample \
--num_samples 10 \
--top_p 0.95 \
--gpu

Security

See CONTRIBUTING for more information.

License

This project is licensed under the Apache-2.0 License.

Owner
Amazon Web Services - Labs
AWS Labs
Amazon Web Services - Labs
Repository for the paper "PoseAug: A Differentiable Pose Augmentation Framework for 3D Human Pose Estimation", CVPR 2021.

PoseAug: A Differentiable Pose Augmentation Framework for 3D Human Pose Estimation Code repository for the paper: PoseAug: A Differentiable Pose Augme

Pyjcsx 328 Dec 17, 2022
Additional code for Stable-baselines3 to load and upload models from the Hub.

Hugging Face x Stable-baselines3 A library to load and upload Stable-baselines3 models from the Hub. Installation With pip Examples [Todo: add colab t

Hugging Face 34 Dec 10, 2022
ThunderSVM: A Fast SVM Library on GPUs and CPUs

What's new We have recently released ThunderGBM, a fast GBDT and Random Forest library on GPUs. add scikit-learn interface, see here Overview The miss

Xtra Computing Group 1.4k Dec 22, 2022
SpiroMask: Measuring Lung Function Using Consumer-Grade Masks

SpiroMask: Measuring Lung Function Using Consumer-Grade Masks Anonymised repository for paper submitted for peer review at ACM HEALTH (October 2021).

0 May 10, 2022
Pytorch implementation for A-NeRF: Articulated Neural Radiance Fields for Learning Human Shape, Appearance, and Pose

A-NeRF: Articulated Neural Radiance Fields for Learning Human Shape, Appearance, and Pose Paper | Website | Data A-NeRF: Articulated Neural Radiance F

Shih-Yang Su 172 Dec 22, 2022
Code for KHGT model, AAAI2021

KHGT Code for KHGT accepted by AAAI2021 Please unzip the data files in Datasets/ first. To run KHGT on Yelp data, use python labcode_yelp.py For Movi

32 Nov 29, 2022
Code release to accompany paper "Geometry-Aware Gradient Algorithms for Neural Architecture Search."

Geometry-Aware Gradient Algorithms for Neural Architecture Search This repository contains the code required to run the experiments for the DARTS sear

18 May 27, 2022
In this tutorial, you will perform inference across 10 well-known pre-trained object detectors and fine-tune on a custom dataset. Design and train your own object detector.

Object Detection Object detection is a computer vision task for locating instances of predefined objects in images or videos. In this tutorial, you wi

Ibrahim Sobh 62 Dec 25, 2022
Human segmentation models, training/inference code, and trained weights, implemented in PyTorch

Human-Segmentation-PyTorch Human segmentation models, training/inference code, and trained weights, implemented in PyTorch. Supported networks UNet: b

Thuy Ng 474 Dec 19, 2022
Multi-Joint dynamics with Contact. A general purpose physics simulator.

MuJoCo Physics MuJoCo stands for Multi-Joint dynamics with Contact. It is a general purpose physics engine that aims to facilitate research and develo

DeepMind 5.2k Jan 02, 2023
Code for 'Single Image 3D Shape Retrieval via Cross-Modal Instance and Category Contrastive Learning', ICCV 2021

CMIC-Retrieval Code for Single Image 3D Shape Retrieval via Cross-Modal Instance and Category Contrastive Learning. ICCV 2021. Introduction In this wo

42 Nov 17, 2022
Jigsaw Rate Severity of Toxic Comments

Jigsaw Rate Severity of Toxic Comments

Guanshuo Xu 66 Nov 30, 2022
An official implementation of "Exploiting a Joint Embedding Space for Generalized Zero-Shot Semantic Segmentation" (ICCV 2021) in PyTorch.

Exploiting a Joint Embedding Space for Generalized Zero-Shot Semantic Segmentation This is an official implementation of the paper "Exploiting a Joint

CV Lab @ Yonsei University 35 Oct 26, 2022
A Comparative Framework for Multimodal Recommender Systems

Cornac Cornac is a comparative framework for multimodal recommender systems. It focuses on making it convenient to work with models leveraging auxilia

Preferred.AI 671 Jan 03, 2023
This repository is for the preprint "A generative nonparametric Bayesian model for whole genomes"

BEAR Overview This repository contains code associated with the preprint A generative nonparametric Bayesian model for whole genomes (2021), which pro

Debora Marks Lab 10 Sep 18, 2022
PyTorch implementation of the paper Deep Networks from the Principle of Rate Reduction

Deep Networks from the Principle of Rate Reduction This repository is the official PyTorch implementation of the paper Deep Networks from the Principl

459 Dec 27, 2022
Referring Video Object Segmentation

Awesome-Referring-Video-Object-Segmentation Welcome to starts ⭐ & comments 💹 & sharing 😀 !! - 2021.12.12: Recent papers (from 2021) - welcome to ad

Explorer 57 Dec 11, 2022
This is an unofficial PyTorch implementation of Meta Pseudo Labels

This is an unofficial PyTorch implementation of Meta Pseudo Labels. The official Tensorflow implementation is here.

Jungdae Kim 320 Jan 08, 2023
PASTRIE: A Corpus of Prepositions Annotated with Supersense Tags in Reddit International English

PASTRIE Official release of the corpus described in the paper: Michael Kranzlein, Emma Manning, Siyao Peng, Shira Wein, Aryaman Arora, and Nathan Schn

NERT @ Georgetown 4 Dec 02, 2021
Optimal space decomposition based-product quantization for approximate nearest neighbor search

Optimal space decomposition based-product quantization for approximate nearest neighbor search Abstract Product quantization(PQ) is an effective neare

Mylove 1 Nov 19, 2021