This repository contains the code for the CVPR 2020 paper "Differentiable Volumetric Rendering: Learning Implicit 3D Representations without 3D Supervision"

Overview

Differentiable Volumetric Rendering

Paper | Supplementary | Spotlight Video | Blog Entry | Presentation | Interactive Slides | Project Page

This repository contains the code for the paper Differentiable Volumetric Rendering: Learning Implicit 3D Representations without 3D Supervision.

You can find detailed usage instructions for training your own models and using pre-trained models below.

If you find our code or paper useful, please consider citing

@inproceedings{DVR,
    title = {Differentiable Volumetric Rendering: Learning Implicit 3D Representations without 3D Supervision},
    author = {Niemeyer, Michael and Mescheder, Lars and Oechsle, Michael and Geiger, Andreas},
    booktitle = {Proc. IEEE Conf. on Computer Vision and Pattern Recognition (CVPR)},
    year = {2020}
}

Installation

First you have to make sure that you have all dependencies in place. The simplest way to do so, is to use anaconda.

You can create an anaconda environment called dvr using

conda env create -f environment.yaml
conda activate dvr

Next, compile the extension modules. You can do this via

python setup.py build_ext --inplace

Demo

You can now test our code on the provided input images in the demo folder. To this end, start the generation process for one of the config files in the configs/demo folder. For example, simply run

python generate.py configs/demo/demo_combined.yaml

This script should create a folder out/demo/demo_combined where the output meshes are stored. The script will copy the inputs into the generation/inputs folder and creates the meshes in the generation/meshes folder. Moreover, the script creates a generation/vis folder where both inputs and outputs are copied together.

Dataset

Download Datasets

To evaluate a pre-trained model or train a new model from scratch, you have to obtain the respective dataset. We use three different datasets in the DVR project:

  1. ShapeNet for 2.5D supervised models (using the Choy et. al. renderings as input and our renderings as supervision)
  2. ShapeNet for 2D supervised models (using the Kato et. al. renderings)
  3. A subset of the DTU multi-view dataset

You can download our preprocessed data using

bash scripts/download_data.sh

and following the instructions. The sizes of the datasets are 114GB (a), 34GB (b), and 0.5GB (c).

This script should download and unpack the data automatically into the data folder.

Data Convention

Please have a look at the FAQ for details regarding the type of camera matrices we use.

Usage

When you have installed all binary dependencies and obtained the preprocessed data, you are ready to run our pre-trained models and train new models from scratch.

Generation

To generate meshes using a trained model, use

python generate.py CONFIG.yaml

where you replace CONFIG.yaml with the correct config file.

The easiest way is to use a pre-trained model. You can do this by using one of the config files which are indicated with _pretrained.yaml.

For example, for our 2.5D supervised single-view reconstruction model run

python generate.py configs/single_view_reconstruction/multi_view_supervision/ours_depth_pretrained.yaml

or for our multi-view reconstruction from RGB images and sparse depth maps for the birds object run

python generate.py configs/multi_view_reconstruction/birds/ours_depth_mvs_pretrained.yaml

Our script will automatically download the model checkpoints and run the generation. You can find the outputs in the out/.../pretrained folders.

Please note that the config files *_pretrained.yaml are only for generation, not for training new models: when these configs are used for training, the model will be trained from scratch, but during inference our code will still use the pre-trained model.

Generation From Your Own Single Images

Similar to our demo, you can easily generate 3D meshes from your own single images. To this end, create a folder which contains your own images (e.g. media/my_images). Next, you can reuse the config file configs/demo/demo_combined.yaml and just adjust the data - path and training - out_dir arguments to your needs. For example, you can set the config file to

inherit_from: configs/single_view_reconstruction/multi_view_supervision/ours_combined_pretrained.yaml
data:
  dataset_name: images
  path: media/my_images
training:
  out_dir:  out/my_3d_models

to generate 3D models for the images in media/my_images. The models will be saved to out/my_3d_models. Similar to before, to start the generation process, run

python generate.py configs/demo/demo_combined.yaml 

Note: You can only expect our model to provide reasonable results on data which is similar to what it was trained on (white background, single object, etc.).

Evaluation

For evaluation of the models, we provide the script eval_meshes.py. You can run it using

python eval_meshes.py CONFIG.yaml

The script takes the meshes generated in the previous step and evaluates them using a standardized protocol. The output will be written to .pkl/.csv files in the corresponding generation folder which can be processed using pandas.

Training

Finally, to train a new network from scratch, run

python train.py CONFIG.yaml

where you replace CONFIG.yaml with the name of the configuration file you want to use.

You can monitor on http://localhost:6006 the training process using tensorboard:

cd OUTPUT_DIR
tensorboard --logdir ./logs

where you replace OUTPUT_DIR with the respective output directory.

For available training options, please take a look at configs/default.yaml.

Futher Information

More Work on Implicit Representations

If you like the DVR project, please check out other works on implicit representions from our group:

Other Relevant Works

Also check out other exciting works on inferring implicit representations without 3D supervision:

Distance-Ratio-Based Formulation for Metric Learning

Distance-Ratio-Based Formulation for Metric Learning Environment Python3 Pytorch (http://pytorch.org/) (version 1.6.0+cu101) json tqdm Preparing datas

Hyeongji Kim 1 Dec 07, 2022
An MQA (Studio, originalSampleRate) identifier for lossless flac files written in Python.

An MQA (Studio, originalSampleRate) identifier for "lossless" flac files written in Python.

Daniel 10 Oct 03, 2022
Source code of our work: "Benchmarking Deep Models for Salient Object Detection"

SALOD Source code of our work: "Benchmarking Deep Models for Salient Object Detection". In this works, we propose a new benchmark for SALient Object D

22 Dec 30, 2022
PyTorch code for Composing Partial Differential Equations with Physics-Aware Neural Networks

FInite volume Neural Network (FINN) This repository contains the PyTorch code for models, training, and testing, and Python code for data generation t

Cognitive Modeling 20 Dec 18, 2022
[ICCV21] Code for RetrievalFuse: Neural 3D Scene Reconstruction with a Database

RetrievalFuse Paper | Project Page | Video RetrievalFuse: Neural 3D Scene Reconstruction with a Database Yawar Siddiqui, Justus Thies, Fangchang Ma, Q

Yawar Nihal Siddiqui 75 Dec 22, 2022
TensorFlow GNN is a library to build Graph Neural Networks on the TensorFlow platform.

TensorFlow GNN This is an early (alpha) release to get community feedback. It's under active development and we may break API compatibility in the fut

889 Dec 30, 2022
MinHash, LSH, LSH Forest, Weighted MinHash, HyperLogLog, HyperLogLog++, LSH Ensemble

datasketch: Big Data Looks Small datasketch gives you probabilistic data structures that can process and search very large amount of data super fast,

Eric Zhu 1.9k Jan 07, 2023
Code for Ditto: Building Digital Twins of Articulated Objects from Interaction

Ditto: Building Digital Twins of Articulated Objects from Interaction Zhenyu Jiang, Cheng-Chun Hsu, Yuke Zhu CVPR 2022, Oral Project | arxiv News 2022

UT Robot Perception and Learning Lab 78 Dec 22, 2022
Neighborhood Contrastive Learning for Novel Class Discovery

Neighborhood Contrastive Learning for Novel Class Discovery This repository contains the official implementation of our paper: Neighborhood Contrastiv

Zhun Zhong 56 Dec 09, 2022
The official repo of the CVPR 2021 paper Group Collaborative Learning for Co-Salient Object Detection .

GCoNet The official repo of the CVPR 2021 paper Group Collaborative Learning for Co-Salient Object Detection . Trained model Download final_gconet.pth

Qi Fan 46 Nov 17, 2022
An open framework for Federated Learning.

Welcome to Intel® Open Federated Learning Federated learning is a distributed machine learning approach that enables organizations to collaborate on m

Intel Corporation 397 Dec 27, 2022
Official pytorch implementation of "DSPoint: Dual-scale Point Cloud Recognition with High-frequency Fusion"

DSPoint Official implementation of "DSPoint: Dual-scale Point Cloud Recognition with High-frequency Fusion". Paper link: https://arxiv.org/abs/2111.10

Ziyao Zeng 14 Feb 26, 2022
[NeurIPS 2021] Official implementation of paper "Learning to Simulate Self-driven Particles System with Coordinated Policy Optimization".

Code for Coordinated Policy Optimization Webpage | Code | Paper | Talk (English) | Talk (Chinese) Hi there! This is the source code of the paper “Lear

DeciForce: Crossroads of Machine Perception and Autonomy 81 Dec 19, 2022
MinkLoc++: Lidar and Monocular Image Fusion for Place Recognition

MinkLoc++: Lidar and Monocular Image Fusion for Place Recognition Paper: MinkLoc++: Lidar and Monocular Image Fusion for Place Recognition accepted fo

64 Dec 18, 2022
Train DeepLab for Semantic Image Segmentation

Train DeepLab for Semantic Image Segmentation Martin Kersner, [email protected]

Martin Kersner 172 Dec 14, 2022
Python scripts to detect faces in Python with the BlazeFace Tensorflow Lite models

Python scripts to detect faces using Python with the BlazeFace Tensorflow Lite models. Tested on Windows 10, Tensorflow 2.4.0 (Python 3.8).

Ibai Gorordo 46 Nov 17, 2022
L-Verse: Bidirectional Generation Between Image and Text

Far beyond learning long-range interactions of natural language, transformers are becoming the de-facto standard for many vision tasks with their power and scalabilty

Kim, Taehoon 102 Dec 21, 2022
🚀 An end-to-end ML applications using PyTorch, W&B, FastAPI, Docker, Streamlit and Heroku

🚀 An end-to-end ML applications using PyTorch, W&B, FastAPI, Docker, Streamlit and Heroku

Made With ML 82 Jun 26, 2022
GraphGT: Machine Learning Datasets for Graph Generation and Transformation

GraphGT: Machine Learning Datasets for Graph Generation and Transformation Dataset Website | Paper Installation Using pip To install the core environm

y6q9 50 Aug 18, 2022
Updated for TTS(CE) = Also Known as TTN V3. The code requires the first server to be 'ttn' protocol.

Updated Updated for TTS(CE) = Also Known as TTN V3. The code requires the first server to be 'ttn' protocol. Introduction This balenaCloud (previously

Remko 1 Oct 17, 2021