MLOps pipeline project using Amazon SageMaker Pipelines

Overview

Welcome to MLOps pipeline project using Amazon SageMaker Pipelines

This project utilizes SageMaker Pipelines that offers machine learning (ML) application developers and operations engineers the ability to orchestrate SageMaker jobs and author reproducible ML pipelines. It enables users to deploy custom-build models for batch and real-time inference with low latency and track lineage of artifacts.

Key Hightlights:
--Visual map to monitor end to end data and ML pipeline progress
--Model Registry to main different model versions and associated metadata
--Access to SageMaker processing jobs to scale/distribute workloads across multiple instances
--Inbuilt workflow orchestration without the need to leverage Step Functions etc
--Human review component
--Model drift detection

Code Layout

|-- data/        --> data file for inference purpose
|-- infra/       --> This folder contains helper function to create iam roles, policies
|-- README.md    --> The summary file of this project
|-- img/         --> images
|-- RegMLNB/     --> This folder contains files for data prep, model training, deployment and inference, model monitoring etc   
|-- pipeline.py  --> This file contain orchestration pipeline for data prep, model training,inference
|-- lambda_deployer.py --> Lambda function to create an endpoint
|-- requirements.txt --> This file contains project dependencies

Architecture Diagram

arch-diag

Data

fake_train_data.csv - This file has a randomly generated dataset, using Pythons random package. All labels and probability percentages are from a random number generator. It's used as a proof of concept for setting train set baseline statistics.

Get Started

This project is templatized with Amazon CDK. The cdk.json file tells the CDK Toolkit how to execute your app.

This project is set up like a standard Python project. The initialization process also creates a virtualenv within this project, stored under the .venv directory. To create the virtualenv it assumes that there is a python3 executable in your path with access to the venv package. If for any reason the automatic creation of the virtualenv fails, you can create the virtualenv manually once the init process completes.

To manually create a virtualenv on MacOS and Linux:

python3 -m venv .venv

After the init process completes and the virtualenv is created, you can use the following step to activate your virtualenv.

$ source .venv/bin/activate

Once the virtualenv is activated, you can install the required dependencies.

pip install -r requirements.txt

At this point you can now synthesize the CloudFormation template for this code.

cdk synth
cdk deploy --all --outputs-file ./cdk-outputs.json

or you can also deploy the stack by running : cdk deploy regml-stack --outputs-file ./cdk-outputs.json

Note: The output file parameter will automate the transfer of your created IAM role ARN to pipeline.py.

Once the stack is created, run the following command:

python pipeline.py

To add additional dependencies, for example other CDK libraries, just add to your requirements.txt file and rerun the pip install -r requirements.txt command.

Useful commands

`cdk ls` list all stacks in the app
`cdk synth` emits the synthesized CloudFormation template
`cdk deploy` deploy this stack to your default AWS account/region
`cdk diff` compare deployed stack with current state
`cdk docs` open CDK documentation

Security

See CONTRIBUTING for more information.

License

This library is licensed under the MIT-0 License. See the LICENSE file.

Owner
AWS Samples
AWS Samples
Transform ML models into a native code with zero dependencies

m2cgen (Model 2 Code Generator) - is a lightweight library which provides an easy way to transpile trained statistical models into a native code

Bayes' Witnesses 2.3k Jan 03, 2023
Napari sklearn decomposition

napari-sklearn-decomposition A simple plugin to use with napari This napari plug

1 Sep 01, 2022
A toolkit for geo ML data processing and model evaluation (fork of solaris)

An open source ML toolkit for overhead imagery. This is a beta version of lunular which may continue to develop. Please report any bugs through issues

Ryan Avery 4 Nov 04, 2021
A fast, distributed, high performance gradient boosting (GBT, GBDT, GBRT, GBM or MART) framework based on decision tree algorithms, used for ranking, classification and many other machine learning tasks.

Light Gradient Boosting Machine LightGBM is a gradient boosting framework that uses tree based learning algorithms. It is designed to be distributed a

Microsoft 14.5k Jan 07, 2023
Practical Time-Series Analysis, published by Packt

Practical Time-Series Analysis This is the code repository for Practical Time-Series Analysis, published by Packt. It contains all the supporting proj

Packt 325 Dec 23, 2022
It is a forest of random projection trees

rpforest rpforest is a Python library for approximate nearest neighbours search: finding points in a high-dimensional space that are close to a given

Lyst 211 Dec 29, 2022
Simple structured learning framework for python

PyStruct PyStruct aims at being an easy-to-use structured learning and prediction library. Currently it implements only max-margin methods and a perce

pystruct 666 Jan 03, 2023
A simple guide to MLOps through ZenML and its various integrations.

ZenBytes Join our Slack Community and become part of the ZenML family Give the main ZenML repo a GitHub star to show your love ZenBytes is a series of

ZenML 127 Dec 27, 2022
fMRIprep Pipeline To Machine Learning

fMRIprep Pipeline To Machine Learning(Demo) 所有配置均在config.py文件下定义 前置环境(lilab) 各个节点均安装docker,并有fmripre的镜像 可以使用conda中的base环境(相应的第三份包之后更新) 1. fmriprep scr

Alien 3 Mar 08, 2022
🤖 ⚡ scikit-learn tips

🤖 ⚡ scikit-learn tips New tips are posted on LinkedIn, Twitter, and Facebook. 👉 Sign up to receive 2 video tips by email every week! 👈 List of all

Kevin Markham 1.6k Jan 03, 2023
Backprop makes it simple to use, finetune, and deploy state-of-the-art ML models.

Backprop makes it simple to use, finetune, and deploy state-of-the-art ML models. Solve a variety of tasks with pre-trained models or finetune them in

Backprop 227 Dec 10, 2022
Required for a machine learning pipeline data preprocessing and variable engineering script needs to be prepared

Feature-Engineering Required for a machine learning pipeline data preprocessing and variable engineering script needs to be prepared. When the dataset

kemalgunay 5 Apr 21, 2022
MBTR is a python package for multivariate boosted tree regressors trained in parameter space.

MBTR is a python package for multivariate boosted tree regressors trained in parameter space.

SUPSI-DACD-ISAAC 61 Dec 19, 2022
ML-powered Loan-Marketer Customer Filtering Engine

In Loan-Marketing business employees are required to call the user's to buy loans of several fields and in several magnitudes. If employees are calling everybody in the network it is also very length

Sagnik Roy 13 Jul 02, 2022
TIANCHI Purchase Redemption Forecast Challenge

TIANCHI Purchase Redemption Forecast Challenge

Haorui HE 4 Aug 26, 2022
A Time Series Library for Apache Spark

Flint: A Time Series Library for Apache Spark The ability to analyze time series data at scale is critical for the success of finance and IoT applicat

Two Sigma 970 Jan 04, 2023
Simple, light-weight config handling through python data classes with to/from JSON serialization/deserialization.

Simple but maybe too simple config management through python data classes. We use it for machine learning.

Eren Gölge 67 Nov 29, 2022
An open source framework that provides a simple, universal API for building distributed applications. Ray is packaged with RLlib, a scalable reinforcement learning library, and Tune, a scalable hyperparameter tuning library.

Ray provides a simple, universal API for building distributed applications. Ray is packaged with the following libraries for accelerating machine lear

23.3k Dec 31, 2022
Python module for machine learning time series:

seglearn Seglearn is a python package for machine learning time series or sequences. It provides an integrated pipeline for segmentation, feature extr

David Burns 536 Dec 29, 2022
LILLIE: Information Extraction and Database Integration Using Linguistics and Learning-Based Algorithms

LILLIE: Information Extraction and Database Integration Using Linguistics and Learning-Based Algorithms Based on the work by Smith et al. (2021) Query

5 Aug 06, 2022