Unofficial implement with paper SpeakerGAN: Speaker identification with conditional generative adversarial network

Overview

Introduction

This repository is about paper SpeakerGAN , and is unofficially implemented by Mingming Huang ([email protected]), Tiezheng Wang ([email protected]) and thanks for advice from TongFeng.

SpeakerGAN paper

SpeakerGAN: Speaker identification with conditional generative adversarial network, by Liyang Chen , Yifeng Liu , Wendong Xiao , Yingxue Wang ,Haiyong Xie.

Usage

For train / test / generate:

python speakergan.py

You may need to change the path of wav vad preprocessed files.

Our results

acc: 94.27% with random sampled testset. 

acc: 93.21% with fixed start sampled testset.

using model file: model/49_D.pkl

acc: 98.44% on training classification accuracy with real samples.

There is about 4% gap on testset lower compared to paper result. We can't find out the reason. We want your help !

Alt accuracy
Alt loss_d_loss_g
Alt learning_rate

Details of paper

The following are details about this paper.

================ input ==================

  1. feature: fbank, 8000hz, 25ms frame, 10ms overlap. shape:(160,64)

  2. dataset: librispeech-100 train-clean-100 POI:251

  3. data preprocess: vad、mean and variance normalization, shuffled.

  4. 60% train. 40% test.

================ model architecture ==================

  1. dataflow: data -> feature extraction -> G & D

  2. model architecture:

    G: gated CNN, encoder-decoder, Huber loss + adversarial loss

    D: ResnetBlocks, template average pooling, FC, softmax, crossentropy loss + adversarial loss

  3. G: shuffler layer, GLU

  4. D: ReLU

================ training ==================

  1. lr: 0-9, 0.0005 | 9-49, 0.0002

  2. L(d): λ1 λ2 = 1

  3. batch_size: 64

  4. D_train steps / G_train steps = 4

  5. Ladv Loss: Label smoothing, 1 -> 0.7 ~ 1.0, 0 -> 0 ~ 0.3

======== not sure or differences with paper ========

  1. weights,bias initialize function, use: xavier_uniform and zeros

  2. pytorch huber_loss: + 0.5 to be same with paper. but no implement here.

  3. for shorter wav, paper: padded with zero. we: padded with feature again.

  4. gated cnn architecture.

  5. we use webrtcvad mode(3) for vad preprocess.

Example-custom-ml-block-keras - Custom Keras ML block example for Edge Impulse

Custom Keras ML block example for Edge Impulse This repository is an example on

Edge Impulse 8 Nov 02, 2022
Compares various time-series feature sets on computational performance, within-set structure, and between-set relationships.

feature-set-comp Compares various time-series feature sets on computational performance, within-set structure, and between-set relationships. Reposito

Trent Henderson 7 May 25, 2022
RL and distillation in CARLA using a factorized world model

World on Rails Learning to drive from a world on rails Dian Chen, Vladlen Koltun, Philipp Krähenbühl, arXiv techical report (arXiv 2105.00636) This re

Dian Chen 131 Dec 16, 2022
AgML is a comprehensive library for agricultural machine learning

AgML is a comprehensive library for agricultural machine learning. Currently, AgML provides access to a wealth of public agricultural datasets for common agricultural deep learning tasks.

Plant AI and Biophysics Lab 1 Jul 07, 2022
Implementation of CSRL from the AAAI2022 paper: Constraint Sampling Reinforcement Learning: Incorporating Expertise For Faster Learning

CSRL Implementation of CSRL from the AAAI2022 paper: Constraint Sampling Reinforcement Learning: Incorporating Expertise For Faster Learning Python: 3

4 Apr 14, 2022
Static-test - A playground to play with ideas related to testing the comparability of the code

Static test playground ⚠️ The code is just an experiment. Compiles and runs on U

Igor Bogoslavskyi 4 Feb 18, 2022
Optimal Camera Position for a Practical Application of Gaze Estimation on Edge Devices,

Optimal Camera Position for a Practical Application of Gaze Estimation on Edge Devices, Linh Van Ma, Tin Trung Tran, Moongu Jeon, ICAIIC 2022 (The 4th

Linh 11 Oct 10, 2022
PyTorch Implementation of AnimeGANv2

PyTorch implementation of AnimeGANv2

4k Jan 07, 2023
Colour detection is necessary to recognize objects, it is also used as a tool in various image editing and drawing apps.

Colour Detection On Image Colour detection is the process of detecting the name of any color. Simple isn’t it? Well, for humans this is an extremely e

Astitva Veer Garg 1 Jan 13, 2022
Locally Most Powerful Bayesian Test for Out-of-Distribution Detection using Deep Generative Models

LMPBT Supplementary code for the Paper entitled ``Locally Most Powerful Bayesian Test for Out-of-Distribution Detection using Deep Generative Models"

1 Sep 29, 2022
Code, environments, and scripts for the paper: "How Private Is Your RL Policy? An Inverse RL Based Analysis Framework"

Privacy-Aware Inverse RL (PRIL) Analysis Framework Code, environments, and scripts for the paper: "How Private Is Your RL Policy? An Inverse RL Based

1 Dec 06, 2021
CLOOB training (JAX) and inference (JAX and PyTorch)

cloob-training Pretrained models There are two pretrained CLOOB models in this repo at the moment, a 16 epoch and a 32 epoch ViT-B/16 checkpoint train

Katherine Crowson 64 Nov 27, 2022
LiDAR R-CNN: An Efficient and Universal 3D Object Detector

LiDAR R-CNN: An Efficient and Universal 3D Object Detector Introduction This is the official code of LiDAR R-CNN: An Efficient and Universal 3D Object

TuSimple 295 Jan 05, 2023
Repository for the paper "From global to local MDI variable importances for random forests and when they are Shapley values"

From global to local MDI variable importances for random forests and when they are Shapley values Antonio Sutera ( Antonio Sutera 3 Feb 23, 2022

Official PyTorch Implementation for "Recurrent Video Deblurring with Blur-Invariant Motion Estimation and Pixel Volumes"

PVDNet: Recurrent Video Deblurring with Blur-Invariant Motion Estimation and Pixel Volumes This repository contains the official PyTorch implementatio

Junyong Lee 98 Nov 06, 2022
Generate fine-tuning samples & Fine-tuning the model & Generate samples by transferring Note On

UPMT Generate fine-tuning samples & Fine-tuning the model & Generate samples by transferring Note On See main.py as an example: from model import PopM

7 Sep 01, 2022
Code release for NeuS

NeuS We present a novel neural surface reconstruction method, called NeuS, for reconstructing objects and scenes with high fidelity from 2D image inpu

Peng Wang 813 Jan 04, 2023
Simple, but essential Bayesian optimization package

BayesO: A Bayesian optimization framework in Python Simple, but essential Bayesian optimization package. http://bayeso.org Online documentation Instal

Jungtaek Kim 74 Dec 05, 2022
Out-of-Distribution Generalization of Chest X-ray Using Risk Extrapolation

OoD_Gen-Chest_Xray Out-of-Distribution Generalization of Chest X-ray Using Risk Extrapolation Requirements (Installations) Install the following libra

Enoch Tetteh 2 Oct 01, 2022
The Simplest DCGAN Implementation

DCGAN in TensorLayer This is the TensorLayer implementation of Deep Convolutional Generative Adversarial Networks. Looking for Text to Image Synthesis

TensorLayer Community 310 Dec 13, 2022