PyTorch implementation for the paper Pseudo Numerical Methods for Diffusion Models on Manifolds

Related tags

Deep LearningPNDM
Overview

Pseudo Numerical Methods for Diffusion Models on Manifolds (PNDM)

PWC

This repo is the official PyTorch implementation for the paper Pseudo Numerical Methods for Diffusion Models on Manifolds

by Luping Liu, Yi Ren, Zhijie Lin, Zhou Zhao (Zhejiang University).

What does this code do?

This code is not only the official implementation for PNDM, but also a generic framework for DDIM-like models including:

Structure

This code contains three main objects including method, schedule and model. The following table shows the options supported by this code and the role of each object.

Object Option Role
method DDIM, S-PNDM, F-PNDM, FON, PF the numerical method used to generate samples
schedule linear, quad, cosine the schedule of adding noise to images
model DDIM, iDDPM, PF, PF_deep the neural network used to fit noise

All of them can be combined at will, so this code provide at least 5x3x4=60 choices to generate samples.

How to run the code

Dependencies

Run the following to install a subset of necessary python packages for our code.

pip install -r requirements.txt

Tip: mpi4py can make the generation process faster using multi-gpus. It is not necessary and can be removed freely.

Usage

Evaluate our models through main.py.

python main.py --runner sample --method F-PNDM --sample_speed 50 --device cuda --config ddim-cifar10.yml --image_path temp/results --model_path temp/models/ddim/ema_cifar10.ckpt
  • runner (train|sample): choose the mode of runner
  • method (DDIM|FON|S-PNDM|F-PNDM|PF): choose the numerical methods
  • sample_speed: control the total generation step
  • device (cpu|cuda:0): choose the device to use
  • config: choose the config file
  • image_path: choose the path to save images
  • model_path: choose the path of model

Train our models through main.py.

python main.py --runner train --device cuda --config ddim-cifar10.yml --train_path temp/train
  • train_path: choose the path to save training status

Checkpoints & statistics

All checkpoints of models and precalculated statistics for FID are provided in this Onedrive.

References

If you find the code useful for your research, please consider citing:

@inproceedings{liu2022pseudo,
    title={Pseudo Numerical Methods for Diffusion Models on Manifolds},
    author={Luping Liu and Yi Ren and Zhijie Lin and Zhou Zhao},
    booktitle={International Conference on Learning Representations},
    year={2022},
    url={https://openreview.net/forum?id=PlKWVd2yBkY}
}

This work is built upon some previous papers which might also interest you:

  • Jonathan Ho, Ajay Jain, and Pieter Abbeel. Denoising diffusion probabilistic models. Advances in Neural Information Processing Systems 33 (2020): 6840-6851.
  • Jiaming Song, Chenlin Meng, and Stefano Ermon. Denoising Diffusion Implicit Models. International Conference on Learning Representations. 2020.
  • Yang Song, Jascha Sohl-Dickstein, Diederik P. Kingma, Abhishek Kumar, Stefano Ermon, and Ben Poole. Score-Based Generative Modeling through Stochastic Differential Equations. International Conference on Learning Representations. 2020.
Owner
Luping Liu (刘路平)
Luping Liu (刘路平)
Official code for article "Expression is enough: Improving traffic signal control with advanced traffic state representation"

1 Introduction Official code for article "Expression is enough: Improving traffic signal control with advanced traffic state representation". The code s

Liang Zhang 10 Dec 10, 2022
This project is the PyTorch implementation of our CVPR 2022 paper:

Requirements and Dependency Install PyTorch with CUDA (for GPU). (Experiments are validated on python 3.8.11 and pytorch 1.7.0) (For visualization if

Lei Huang 23 Nov 29, 2022
Defending graph neural networks against adversarial attacks (NeurIPS 2020)

GNNGuard: Defending Graph Neural Networks against Adversarial Attacks Authors: Xiang Zhang ( Zitnik Lab @ Harvard 44 Dec 07, 2022

[NeurIPS 2021] Galerkin Transformer: a linear attention without softmax

[NeurIPS 2021] Galerkin Transformer: linear attention without softmax Summary A non-numerical analyst oriented explanation on Toward Data Science abou

Shuhao Cao 159 Dec 20, 2022
[ACM MM 2021] TSA-Net: Tube Self-Attention Network for Action Quality Assessment

Tube Self-Attention Network (TSA-Net) This repository contains the PyTorch implementation for paper TSA-Net: Tube Self-Attention Network for Action Qu

ShunliWang 18 Dec 23, 2022
Pytorch Implementation for CVPR2018 Paper: Learning to Compare: Relation Network for Few-Shot Learning

LearningToCompare Pytorch Implementation for Paper: Learning to Compare: Relation Network for Few-Shot Learning Howto download mini-imagenet and make

Jackie Loong 246 Dec 19, 2022
ICCV2021 - Mining Contextual Information Beyond Image for Semantic Segmentation

Introduction The official repository for "Mining Contextual Information Beyond Image for Semantic Segmentation". Our full code has been merged into ss

55 Nov 09, 2022
Reducing Information Bottleneck for Weakly Supervised Semantic Segmentation (NeurIPS 2021)

Reducing Information Bottleneck for Weakly Supervised Semantic Segmentation (NeurIPS 2021) The implementation of Reducing Infromation Bottleneck for W

Jungbeom Lee 81 Dec 16, 2022
Dataset VSD4K includes 6 popular categories: game, sport, dance, vlog, interview and city.

CaFM-pytorch ICCV ACCEPT Introduction of dataset VSD4K Our dataset VSD4K includes 6 popular categories: game, sport, dance, vlog, interview and city.

96 Jul 05, 2022
AtlasNet: A Papier-Mâché Approach to Learning 3D Surface Generation

AtlasNet [Project Page] [Paper] [Talk] AtlasNet: A Papier-Mâché Approach to Learning 3D Surface Generation Thibault Groueix, Matthew Fisher, Vladimir

577 Dec 17, 2022
An educational tool to introduce AI planning concepts using mobile manipulator robots.

JEDAI Explains Decision-Making AI Virtual Machine Image The recommended way of using JEDAI is to use pre-configured Virtual Machine image that is avai

Autonomous Agents and Intelligent Robots 13 Nov 15, 2022
Implementation EfficientDet: Scalable and Efficient Object Detection in PyTorch

Implementation EfficientDet: Scalable and Efficient Object Detection in PyTorch

tonne 1.4k Dec 29, 2022
AAAI 2022: Stationary diffusion state neural estimation

Stationary Diffusion State Neural Estimation Although many graph-based clustering methods attempt to model the stationary diffusion state in their obj

绽琨 33 Nov 24, 2022
Code and datasets for the paper "KnowPrompt: Knowledge-aware Prompt-tuning with Synergistic Optimization for Relation Extraction"

KnowPrompt Code and datasets for our paper "KnowPrompt: Knowledge-aware Prompt-tuning with Synergistic Optimization for Relation Extraction" Requireme

ZJUNLP 137 Dec 31, 2022
Semantic-aware Grad-GAN for Virtual-to-Real Urban Scene Adaption

SG-GAN TensorFlow implementation of SG-GAN. Prerequisites TensorFlow (implemented in v1.3) numpy scipy pillow Getting Started Train Prepare dataset. W

lplcor 61 Jun 07, 2022
[CVPR 2022] Official code for the paper: "A Stitch in Time Saves Nine: A Train-Time Regularizing Loss for Improved Neural Network Calibration"

MDCA Calibration This is the official PyTorch implementation for the paper: "A Stitch in Time Saves Nine: A Train-Time Regularizing Loss for Improved

MDCA Calibration 21 Dec 22, 2022
Boston House Prediction Valuation Tool

Boston-House-Prediction-Valuation-Tool From Below Anlaysis The Valuation Tool is Designed Correlation Matrix Regrssion Analysis Between Target Vs Pred

0 Sep 09, 2022
this is a lite easy to use virtual keyboard project for anyone to use

virtual_Keyboard this is a lite easy to use virtual keyboard project for anyone to use motivation I made this for this year's recruitment for RobEn AA

Mohamed Emad 3 Oct 23, 2021
SCALE: Modeling Clothed Humans with a Surface Codec of Articulated Local Elements (CVPR 2021)

SCALE: Modeling Clothed Humans with a Surface Codec of Articulated Local Elements (CVPR 2021) This repository contains the official PyTorch implementa

Qianli Ma 133 Jan 05, 2023
A simple and lightweight genetic algorithm for optimization of any machine learning model

geneticml This package contains a simple and lightweight genetic algorithm for optimization of any machine learning model. Installation Use pip to ins

Allan Barcelos 8 Aug 10, 2022