An educational tool to introduce AI planning concepts using mobile manipulator robots.

Overview

JEDAI Explains Decision-Making AI

Virtual Machine Image

The recommended way of using JEDAI is to use pre-configured Virtual Machine image that is available here: https://bit.ly/2WccU4K

To setup the system manually, you can use the steps given below:

Tutorial

A short video tutorial on how to use JEDAI is available here: https://bit.ly/3BmQugi

Running JEDAI

Use this command to start JEDAI from the JEDAI source directory (~/JEDAI/ in VM Image).

./start_jedai.sh

Alternatively execute this command:

python3 manage.py runserver

The output of this command includes a link to the development server hosting the frontend.

You can stop the execution anytime using this command from the JEDAI source directory (~/JEDAI/ in VM Image):

./stop_jedai.sh

Installing JEDAI on a new system

Requirements

  • Ubuntu 18.04
  • Python 2 and 3
  • Validate: https://github.com/KCL-Planning/VAL
    1. Retrieve and enter the repo:

      git clone https://github.com/KCL-Planning/VAL

      cd VAL

    2. Build the binary:

      ./scripts/linux/build_linux64.sh all Release

      • This will put Validate in <PARENT_DIR>/VAL/build/linux64/Release/bin

NOTE: JEDAI is tested extensively with Chromium (including Edge, Vivaldi, and Google Chrome). Support on other browsers is not guaranteed.

Setup

  1. Retrieve the TMP_Merged submodule by running the following in the project root (unless you already have TMP_Merged somewhere else on your system and want to use that, in which case you can try a symlink):

    git clone https://github.com/AAIR-lab/Anytime-Task-and-Motion-Policies.git TMP_Merged

    1. You must then install the dependencies for the submodule (this will probably take a while):

      bash TMP_Merged/install_tmp_dependencies.sh

    2. Also make sure to check out the correct branch of the submodule:

      cd TMP_Merged

      git checkout origin/TMP_JEDAI

  2. Install the web framework:

    pip3 install django

  3. Install the YAML library:

    pip3 install PyYAML

  4. Install the PDDL library:

    pip3 install pddlpy

    • If you get an error while running the code about a missing module named __builtin__ in the antlr4 library, then running this should help:

      pip3 install antlr4-python3-runtime==4.7

  5. Install the imaging library:

    pip3 install Pillow

  6. Check that PYTHON_2_PATH and VAL_PATH in config.py are pointing to the corresponding binaries on your system.

You are required to submit a domain and problem file, as well as a .dae environment file. See the test_domains directory for examples.

TMP submodule

After installing its dependencies, the TMP submodule should work out of the box, with environments popping up and giving a demonstration of successful plans. If you get any strange import errors from TMP despite packages seeming to be installed correctly, double-check your all your environment variables (especially if using an IDE like PyCharm).

Contributors

Trevor Angle
Naman Shah
Kiran Prasad
Pulkit Verma
Amruta Tapadiya
Kyle Atkinson
Chirav Dave
Judith Rosenke
Rushang Karia
Siddharth Srivastava

Owner
Autonomous Agents and Intelligent Robots
ASU research group focusing on well-founded and reliable assistive AI systems
Autonomous Agents and Intelligent Robots
Sound and Cost-effective Fuzzing of Stripped Binaries by Incremental and Stochastic Rewriting

StochFuzz: A New Solution for Binary-only Fuzzing StochFuzz is a (probabilistically) sound and cost-effective fuzzing technique for stripped binaries.

Zhuo Zhang 164 Dec 05, 2022
An Agnostic Computer Vision Framework - Pluggable to any Training Library: Fastai, Pytorch-Lightning with more to come

IceVision is the first agnostic computer vision framework to offer a curated collection with hundreds of high-quality pre-trained models from torchvision, MMLabs, and soon Pytorch Image Models. It or

airctic 789 Dec 29, 2022
Deep Anomaly Detection with Outlier Exposure (ICLR 2019)

Outlier Exposure This repository contains the essential code for the paper Deep Anomaly Detection with Outlier Exposure (ICLR 2019). Requires Python 3

Dan Hendrycks 464 Dec 27, 2022
Simulated garment dataset for virtual try-on

Simulated garment dataset for virtual try-on This repository contains the dataset used in the following papers: Self-Supervised Collision Handling via

33 Dec 20, 2022
Accelerated deep learning R&D

Accelerated deep learning R&D PyTorch framework for Deep Learning research and development. It focuses on reproducibility, rapid experimentation, and

Catalyst-Team 3.1k Jan 06, 2023
An open-source project for applying deep learning to medical scenarios

Auto Vaidya An open source solution for creating end-end web app for employing the power of deep learning in various clinical scenarios like implant d

Smaranjit Ghose 18 May 29, 2022
Code for our ICCV 2021 Paper "OadTR: Online Action Detection with Transformers".

Code for our ICCV 2021 Paper "OadTR: Online Action Detection with Transformers".

66 Dec 15, 2022
MiraiML: asynchronous, autonomous and continuous Machine Learning in Python

MiraiML Mirai: future in japanese. MiraiML is an asynchronous engine for continuous & autonomous machine learning, built for real-time usage. Usage In

Arthur Paulino 25 Jul 27, 2022
Ontologysim: a Owlready2 library for applied production simulation

Ontologysim: a Owlready2 library for applied production simulation Ontologysim is an open-source deep production simulation framework, with an emphasi

10 Nov 30, 2022
QMagFace: Simple and Accurate Quality-Aware Face Recognition

Quality-Aware Face Recognition 26.11.2021 start readme QMagFace: Simple and Accurate Quality-Aware Face Recognition Research Paper Implementation - To

Philipp Terhörst 59 Jan 04, 2023
Pretrained language model and its related optimization techniques developed by Huawei Noah's Ark Lab.

Pretrained Language Model This repository provides the latest pretrained language models and its related optimization techniques developed by Huawei N

HUAWEI Noah's Ark Lab 2.6k Jan 01, 2023
git《FSCE: Few-Shot Object Detection via Contrastive Proposal Encoding》(CVPR 2021) GitHub: [fig8]

FSCE: Few-Shot Object Detection via Contrastive Proposal Encoding (CVPR 2021) This repo contains the implementation of our state-of-the-art fewshot ob

233 Dec 29, 2022
Neural Module Network for VQA in Pytorch

Neural Module Network (NMN) for VQA in Pytorch Note: This is NOT an official repository for Neural Module Networks. NMN is a network that is assembled

Harsh Trivedi 111 Nov 24, 2022
Codebase to experiment with a hybrid Transformer that combines conditional sequence generation with regression

Regression Transformer Codebase to experiment with a hybrid Transformer that combines conditional sequence generation with regression . Development se

International Business Machines 27 Jan 05, 2023
Scripts and a shader to get you started on setting up an exported Koikatsu character in Blender.

KK Blender Shader Pack A plugin and a shader to get you started with setting up an exported Koikatsu character in Blender. The plugin is a Blender add

166 Jan 01, 2023
Official implementation of the paper "AAVAE: Augmentation-AugmentedVariational Autoencoders"

AAVAE Official implementation of the paper "AAVAE: Augmentation-AugmentedVariational Autoencoders" Abstract Recent methods for self-supervised learnin

Grid AI Labs 48 Dec 12, 2022
Joint Gaussian Graphical Model Estimation: A Survey

Joint Gaussian Graphical Model Estimation: A Survey Test Models Fused graphical lasso [1] Group graphical lasso [1] Graphical lasso [1] Doubly joint s

Koyejo Lab 1 Aug 10, 2022
Parametric Contrastive Learning (ICCV2021)

Parametric-Contrastive-Learning This repository contains the implementation code for ICCV2021 paper: Parametric Contrastive Learning (https://arxiv.or

DV Lab 156 Dec 21, 2022
SpanNER: Named EntityRe-/Recognition as Span Prediction

SpanNER: Named EntityRe-/Recognition as Span Prediction Overview | Demo | Installation | Preprocessing | Prepare Models | Running | System Combination

NeuLab 104 Dec 17, 2022
[CVPR 2022] Back To Reality: Weak-supervised 3D Object Detection with Shape-guided Label Enhancement

Back To Reality: Weak-supervised 3D Object Detection with Shape-guided Label Enhancement Announcement 🔥 We have not tested the code yet. We will fini

Xiuwei Xu 7 Oct 30, 2022