Workshop Materials Delivered on 28/02/2022

Overview

intro-to-cnn-p1

Repo for hosting workshop materials delivered on 28/02/2022

Questions you will answer in this workshop

Learning Objectives

  • What are convolutional layers and how do Convolutional Neural Networks Work (CNNs)
  • Introduction to CNN classifiers, object detectors, and Semantic Segmentation
  • Learn to convert a fully dense network to a CNN in TensorFlow to improve the performance of image classifiers
  • A quick look into Object detection CNNs
  • Learn how to design CNNs for your AI application

What will I learn during this workshop

Prerequisites

In this training, we will approach the problem from the ground up. Reviewing how CNNs work without getting bogged down into the detail and getting some models training as fast as possible. The workshop materials will be delivered in a combination of coding exercises and lectures.

Steps

This workshop consists of the following activities:

Slides

You can access the slides here

Setup

  1. Clone this git repository using git clone https://github.com/beginners-machine-learning-london/intro-to-cnn-p1
  2. Open the project in your IDE such as Pycharm
  3. Run the following command to install the required packages (Learn more about python virtual environments here):
    1. Create the environment using python -m venv venv
    2. Activate the environment using source venv/bin/activate
    3. Install the required packages using pip install -r requirements.txt

Featured technologies

  • Python: Python is a programming language that lets you work more quickly and integrate your systems more effectively.
  • Tensorflow: A deep learning framework by Google (used in most production environments).
  • Keras: A high-level API for Tensorflow.
  • OpenCV: Open source computer vision library for computer vision and image processing.
  • Matplotlib: A library for plotting graphs and images in Python.
  • Numpy: A library for scientific computing with Python.

Dataset Source

  • The Fashion MNIST datasets are provided as part of the deep learning framework Tensorflow under the MIT license.
  • The dataset consists of 60,000 28x28 grayscale images of 10 classes: T-shirt/top, Trouser, Pullover, Dress, Coat, Sandal, Shirt, Sneaker, Bag, Ankle boot.
  • The images are divided into train and test sets. The training set contains 60,000 images. The test set contains 10,000 images.
  • This dataset is used in this workshop to train a CNN.
  • The images are 28x28 grayscale images.
  • The labels are one-hot encoded.
  • The training set is used to train the model and The test set is used to evaluate the model.

Learn More

Collaboration, Questions and Discussions

  • BML Slack Channel - Join our slack workspace to collaborate with others, discuss ideas and post any questions you have about our group or the workshops
  • Have questions about workshop exercises or setting up your AWS account and configurations? Post them here

Workshop Feedback

  • How was this workshop? Please provide us with some feedback here so that we can improve the content and delivery of future workshops.
Owner
Beginners Machine Learning
Content hub for hands-on machine learning workshops.
Beginners Machine Learning
[ICCV2021] Learning to Track Objects from Unlabeled Videos

Unsupervised Single Object Tracking (USOT) 🌿 Learning to Track Objects from Unlabeled Videos Jilai Zheng, Chao Ma, Houwen Peng and Xiaokang Yang 2021

53 Dec 28, 2022
The official PyTorch implementation for NCSNv2 (NeurIPS 2020)

Improved Techniques for Training Score-Based Generative Models This repo contains the official implementation for the paper Improved Techniques for Tr

174 Dec 26, 2022
Implementation of paper "DCS-Net: Deep Complex Subtractive Neural Network for Monaural Speech Enhancement"

DCS-Net This is the implementation of "DCS-Net: Deep Complex Subtractive Neural Network for Monaural Speech Enhancement" Steps to run the model Edit V

Jack Walters 10 Apr 04, 2022
A small tool to joint picture including gif

README 做设计的时候遇到拼接长图的情况,但是发现没有什么好用的能拼接gif的工具。 于是自己写了个gif拼接小工具。 可以自动拼接gif、png和jpg等常见格式。 效果 从上至下 从下至上 从左至右 从右至左 使用 克隆仓库 git clone https://github.com/Dels

3 Dec 15, 2021
PyTorch code for Composing Partial Differential Equations with Physics-Aware Neural Networks

FInite volume Neural Network (FINN) This repository contains the PyTorch code for models, training, and testing, and Python code for data generation t

Cognitive Modeling 20 Dec 18, 2022
Implementation of our NeurIPS 2021 paper "A Bi-Level Framework for Learning to Solve Combinatorial Optimization on Graphs".

PPO-BiHyb This is the official implementation of our NeurIPS 2021 paper "A Bi-Level Framework for Learning to Solve Combinatorial Optimization on Grap

<a href=[email protected]"> 66 Nov 23, 2022
Code for "Diversity can be Transferred: Output Diversification for White- and Black-box Attacks"

Output Diversified Sampling (ODS) This is the github repository for the NeurIPS 2020 paper "Diversity can be Transferred: Output Diversification for W

50 Dec 11, 2022
Band-Adaptive Spectral-Spatial Feature Learning Neural Network for Hyperspectral Image Classification

Band-Adaptive Spectral-Spatial Feature Learning Neural Network for Hyperspectral Image Classification

258 Dec 29, 2022
Implementation of Self-supervised Graph-level Representation Learning with Local and Global Structure (ICML 2021).

Self-supervised Graph-level Representation Learning with Local and Global Structure Introduction This project is an implementation of ``Self-supervise

MilaGraph 50 Dec 09, 2022
OpenMMLab 3D Human Parametric Model Toolbox and Benchmark

Introduction English | 简体中文 MMHuman3D is an open source PyTorch-based codebase for the use of 3D human parametric models in computer vision and comput

OpenMMLab 782 Jan 04, 2023
Learning Energy-Based Models by Diffusion Recovery Likelihood

Learning Energy-Based Models by Diffusion Recovery Likelihood Ruiqi Gao, Yang Song, Ben Poole, Ying Nian Wu, Diederik P. Kingma Paper: https://arxiv.o

Ruiqi Gao 41 Nov 22, 2022
[ICML'21] Estimate the accuracy of the classifier in various environments through self-supervision

What Does Rotation Prediction Tell Us about Classifier Accuracy under Varying Testing Environments? [Paper] [ICML'21 Project] PyTorch Implementation T

24 Oct 26, 2022
Code for the paper "Adversarially Regularized Autoencoders (ICML 2018)" by Zhao, Kim, Zhang, Rush and LeCun

ARAE Code for the paper "Adversarially Regularized Autoencoders (ICML 2018)" by Zhao, Kim, Zhang, Rush and LeCun https://arxiv.org/abs/1706.04223 Disc

Junbo (Jake) Zhao 399 Jan 02, 2023
This is the source code for: Context-aware Entity Typing in Knowledge Graphs.

This is the source code for: Context-aware Entity Typing in Knowledge Graphs.

9 Sep 01, 2022
PyTorch implementation of "VRT: A Video Restoration Transformer"

VRT: A Video Restoration Transformer Jingyun Liang, Jiezhang Cao, Yuchen Fan, Kai Zhang, Rakesh Ranjan, Yawei Li, Radu Timofte, Luc Van Gool Computer

Jingyun Liang 837 Jan 09, 2023
A PyTorch-based R-YOLOv4 implementation which combines YOLOv4 model and loss function from R3Det for arbitrary oriented object detection.

R-YOLOv4 This is a PyTorch-based R-YOLOv4 implementation which combines YOLOv4 model and loss function from R3Det for arbitrary oriented object detect

94 Dec 03, 2022
Run containerized, rootless applications with podman

Why? restrict scope of file system access run any application without root privileges creates usable "Desktop applications" to integrate into your nor

119 Dec 27, 2022
the code for our CVPR 2021 paper Bilateral Grid Learning for Stereo Matching Network [BGNet]

BGNet This repository contains the code for our CVPR 2021 paper Bilateral Grid Learning for Stereo Matching Network [BGNet] Environment Python 3.6.* C

3DCV developer 87 Nov 29, 2022
Cross-Modal Contrastive Learning for Text-to-Image Generation

Cross-Modal Contrastive Learning for Text-to-Image Generation This repository hosts the open source JAX implementation of XMC-GAN. Setup instructions

Google Research 94 Nov 12, 2022
This is the official pytorch implementation of Student Helping Teacher: Teacher Evolution via Self-Knowledge Distillation(TESKD)

Student Helping Teacher: Teacher Evolution via Self-Knowledge Distillation (TESKD) By Zheng Li[1,4], Xiang Li[2], Lingfeng Yang[2,4], Jian Yang[2], Zh

Zheng Li 9 Sep 26, 2022