PyGCL: A PyTorch Library for Graph Contrastive Learning

Overview

logo

PyGCL is a PyTorch-based open-source Graph Contrastive Learning (GCL) library, which features modularized GCL components from published papers, standardized evaluation, and experiment management.

Made with Python PyPI version Documentation Status GitHub stars GitHub forks Total lines visitors


What is Graph Contrastive Learning?

Graph Contrastive Learning (GCL) establishes a new paradigm for learning graph representations without human annotations. A typical GCL algorithm firstly constructs multiple graph views via stochastic augmentation of the input and then learns representations by contrasting positive samples against negative ones.

👉 For a general introduction of GCL, please refer to our paper and blog. Also, this repo tracks newly published GCL papers.

Install

Prerequisites

PyGCL needs the following packages to be installed beforehand:

  • Python 3.8+
  • PyTorch 1.9+
  • PyTorch-Geometric 1.7
  • DGL 0.7+
  • Scikit-learn 0.24+
  • Numpy
  • tqdm
  • NetworkX

Installation via PyPI

To install PyGCL with pip, simply run:

pip install PyGCL

Then, you can import GCL from your current environment.

A note regarding DGL

Currently the DGL team maintains two versions, dgl for CPU support and dgl-cu*** for CUDA support. Since pip treats them as different packages, it is hard for PyGCL to check for the version requirement of dgl. We have removed such dependency checks for dgl in our setup configuration and require the users to install a proper version by themselves.

Package Overview

Our PyGCL implements four main components of graph contrastive learning algorithms:

  • Graph augmentation: transforms input graphs into congruent graph views.
  • Contrasting architectures and modes: generate positive and negative pairs according to node and graph embeddings.
  • Contrastive objectives: computes the likelihood score for positive and negative pairs.
  • Negative mining strategies: improves the negative sample set by considering the relative similarity (the hardness) of negative sample.

We also implement utilities for training models, evaluating model performance, and managing experiments.

Implementations and Examples

For a quick start, please check out the examples folder. We currently implemented the following methods:

  • DGI (P. VeliÄŤković et al., Deep Graph Infomax, ICLR, 2019) [Example1, Example2]
  • InfoGraph (F.-Y. Sun et al., InfoGraph: Unsupervised and Semi-supervised Graph-Level Representation Learning via Mutual Information Maximization, ICLR, 2020) [Example]
  • MVGRL (K. Hassani et al., Contrastive Multi-View Representation Learning on Graphs, ICML, 2020) [Example1, Example2]
  • GRACE (Y. Zhu et al., Deep Graph Contrastive Representation Learning, [email protected], 2020) [Example]
  • GraphCL (Y. You et al., Graph Contrastive Learning with Augmentations, NeurIPS, 2020) [Example]
  • SupCon (P. Khosla et al., Supervised Contrastive Learning, NeurIPS, 2020) [Example]
  • HardMixing (Y. Kalantidis et al., Hard Negative Mixing for Contrastive Learning, NeurIPS, 2020)
  • DCL (C.-Y. Chuang et al., Debiased Contrastive Learning, NeurIPS, 2020)
  • HCL (J. Robinson et al., Contrastive Learning with Hard Negative Samples, ICLR, 2021)
  • Ring (M. Wu et al., Conditional Negative Sampling for Contrastive Learning of Visual Representations, ICLR, 2021)
  • Exemplar (N. Zhao et al., What Makes Instance Discrimination Good for Transfer Learning?, ICLR, 2021)
  • BGRL (S. Thakoor et al., Bootstrapped Representation Learning on Graphs, arXiv, 2021) [Example1, Example2]
  • G-BT (P. Bielak et al., Graph Barlow Twins: A Self-Supervised Representation Learning Framework for Graphs, arXiv, 2021) [Example]
  • VICReg (A. Bardes et al., VICReg: Variance-Invariance-Covariance Regularization for Self-Supervised Learning, arXiv, 2021)

Building Your Own GCL Algorithms

Besides try the above examples for node and graph classification tasks, you can also build your own graph contrastive learning algorithms straightforwardly.

Graph Augmentation

In GCL.augmentors, PyGCL provides the Augmentor base class, which offers a universal interface for graph augmentation functions. Specifically, PyGCL implements the following augmentation functions:

Augmentation Class name
Edge Adding (EA) EdgeAdding
Edge Removing (ER) EdgeRemoving
Feature Masking (FM) FeatureMasking
Feature Dropout (FD) FeatureDropout
Edge Attribute Masking (EAR) EdgeAttrMasking
Personalized PageRank (PPR) PPRDiffusion
Markov Diffusion Kernel (MDK) MarkovDiffusion
Node Dropping (ND) NodeDropping
Node Shuffling (NS) NodeShuffling
Subgraphs induced by Random Walks (RWS) RWSampling
Ego-net Sampling (ES) Identity

Call these augmentation functions by feeding with a Graph in a tuple form of node features, edge index, and edge features (x, edge_index, edge_attrs) will produce corresponding augmented graphs.

Composite Augmentations

PyGCL supports composing arbitrary numbers of augmentations together. To compose a list of augmentation instances augmentors, you need to use the Compose class:

import GCL.augmentors as A

aug = A.Compose([A.EdgeRemoving(pe=0.3), A.FeatureMasking(pf=0.3)])

You can also use the RandomChoice class to randomly draw a few augmentations each time:

import GCL.augmentors as A

aug = A.RandomChoice([A.RWSampling(num_seeds=1000, walk_length=10),
                      A.NodeDropping(pn=0.1),
                      A.FeatureMasking(pf=0.1),
                      A.EdgeRemoving(pe=0.1)],
                     num_choices=1)

Customizing Your Own Augmentation

You can write your own augmentation functions by inheriting the base Augmentor class and defining the augment function.

Contrasting Architectures and Modes

Existing GCL architectures could be grouped into two lines: negative-sample-based methods and negative-sample-free ones.

  • Negative-sample-based approaches can either have one single branch or two branches. In single-branch contrasting, we only need to construct one graph view and perform contrastive learning within this view. In dual-branch models, we generate two graph views and perform contrastive learning within and across views.
  • Negative-sample-free approaches eschew the need of explicit negative samples. Currently, PyGCL supports the bootstrap-style contrastive learning as well contrastive learning within embeddings (such as Barlow Twins and VICReg).
Contrastive architectures Supported contrastive modes Need negative samples Class name Examples
Single-branch contrasting G2L only âś… SingleBranchContrast DGI, InfoGraph
Dual-branch contrasting L2L, G2G, and G2L âś… DualBranchContrast GRACE
Bootstrapped contrasting L2L, G2G, and G2L ❎ BootstrapContrast BGRL
Within-embedding contrasting L2L and G2G ❎ WithinEmbedContrast GBT

Moreover, you can use add_extra_mask if you want to add positives or remove negatives. This function performs bitwise ADD to extra positive masks specified by extra_pos_mask and bitwise OR to extra negative masks specified by extra_neg_mask. It is helpful, for example, when you have supervision signals from labels and want to train the model in a semi-supervised manner.

Internally, PyGCL calls Sampler classes in GCL.models that receive embeddings and produce positive/negative masks. PyGCL implements three contrasting modes: (a) Local-Local (L2L), (b) Global-Global (G2G), and (c) Global-Local (G2L) modes. L2L and G2G modes contrast embeddings at the same scale and the latter G2L one performs cross-scale contrasting. To implement your own GCL model, you may also use these provided sampler models:

Contrastive modes Class name
Same-scale contrasting (L2L and G2G) SameScaleSampler
Cross-scale contrasting (G2L) CrossScaleSampler
  • For L2L and G2G, embedding pairs of the same node/graph in different views constitute positive pairs. You can refer to GRACE and GraphCL for examples.
  • For G2L, node-graph embedding pairs form positives. Note that for single-graph datasets, the G2L mode requires explicit negative sampling (otherwise no negatives for contrasting). You can refer to DGI for an example.
  • Some models (e.g., GRACE) add extra intra-view negative samples. You may manually call sampler.add_intraview_negs to enlarge the negative sample set.
  • Note that the bootstrapping latent model involves some special model design (asymmetric online/offline encoders and momentum weight updates). You may refer to BGRL for details.

Contrastive Objectives

In GCL.losses, PyGCL implements the following contrastive objectives:

Contrastive objectives Class name
InfoNCE loss InfoNCE
Jensen-Shannon Divergence (JSD) loss JSD
Triplet Margin (TM) loss Triplet
Bootstrapping Latent (BL) loss BootstrapLatent
Barlow Twins (BT) loss BarlowTwins
VICReg loss VICReg

All these objectives are able to contrast any arbitrary positive and negative pairs, except for Barlow Twins and VICReg losses that perform contrastive learning within embeddings. Moreover, for InfoNCE and Triplet losses, we further provide SP variants that computes contrastive objectives given only one positive pair per sample to speed up computation and avoid excessive memory consumption.

Negative Sampling Strategies

PyGCL further implements several negative sampling strategies:

Negative sampling strategies Class name
Subsampling GCL.models.SubSampler
Hard negative mixing GCL.models.HardMixing
Conditional negative sampling GCL.models.Ring
Debiased contrastive objective GCL.losses.DebiasedInfoNCE , GCL.losses.DebiasedJSD
Hardness-biased negative sampling GCL.losses.HardnessInfoNCE, GCL.losses.HardnessJSD

The former three models serve as an additional sampling step similar to existing Sampler ones and can be used in conjunction with any objectives. The last two objectives are only for InfoNCE and JSD losses.

Utilities

PyGCL provides a variety of evaluator functions to evaluate the embedding quality:

Evaluator Class name
Logistic regression LREvaluator
Support vector machine SVMEvaluator
Random forest RFEvaluator

To use these evaluators, you first need to generate dataset splits by get_split (random split) or by from_predefined_split (according to preset splits).

Contribution

Feel free to open an issue should you find anything unexpected or create pull requests to add your own work! We are motivated to continuously make PyGCL even better.

Citation

Please cite our paper if you use this code in your own work:

@article{Zhu:2021tu,
author = {Zhu, Yanqiao and Xu, Yichen and Liu, Qiang and Wu, Shu},
title = {{An Empirical Study of Graph Contrastive Learning}},
journal = {arXiv.org},
year = {2021},
eprint = {2109.01116v1},
eprinttype = {arxiv},
eprintclass = {cs.LG},
month = sep,
}
Owner
PyGCL
A PyTorch Library for Graph Contrastive Learning
PyGCL
Code to reproduce the experiments in the paper "Transformer Based Multi-Source Domain Adaptation" (EMNLP 2020)

Transformer Based Multi-Source Domain Adaptation Dustin Wright and Isabelle Augenstein To appear in EMNLP 2020. Read the preprint: https://arxiv.org/a

CopeNLU 36 Dec 05, 2022
ShinRL: A Library for Evaluating RL Algorithms from Theoretical and Practical Perspectives

Status: Under development (expect bug fixes and huge updates) ShinRL: A Library for Evaluating RL Algorithms from Theoretical and Practical Perspectiv

37 Dec 28, 2022
Running AlphaFold2 (from ColabFold) in Azure Machine Learning

Running AlphaFold2 (from ColabFold) in Azure Machine Learning Colby T. Ford, Ph.D. Companion repository for Medium Post: How to predict many protein s

Colby T. Ford 3 Feb 18, 2022
BrainGNN - A deep learning model for data-driven discovery of functional connectivity

A deep learning model for data-driven discovery of functional connectivity https://doi.org/10.3390/a14030075 Usman Mahmood, Zengin Fu, Vince D. Calhou

Usman Mahmood 3 Aug 28, 2022
Code accompanying the paper Say As You Wish: Fine-grained Control of Image Caption Generation with Abstract Scene Graphs (Chen et al., CVPR 2020, Oral).

Say As You Wish: Fine-grained Control of Image Caption Generation with Abstract Scene Graphs This repository contains PyTorch implementation of our pa

Shizhe Chen 178 Dec 29, 2022
Tools for robust generative diffeomorphic slice to volume reconstruction

RGDSVR Tools for Robust Generative Diffeomorphic Slice to Volume Reconstructions (RGDSVR) This repository provides tools to implement the methods in t

Lucilio Cordero-Grande 0 Oct 29, 2021
Reduce end to end training time from days to hours (or hours to minutes), and energy requirements/costs by an order of magnitude using coresets and data selection.

COResets and Data Subset selection Reduce end to end training time from days to hours (or hours to minutes), and energy requirements/costs by an order

decile-team 244 Jan 09, 2023
All public open-source implementations of convnets benchmarks

convnet-benchmarks Easy benchmarking of all public open-source implementations of convnets. A summary is provided in the section below. Machine: 6-cor

Soumith Chintala 2.7k Dec 30, 2022
TensorFlow (Python API) implementation of Neural Style

neural-style-tf This is a TensorFlow implementation of several techniques described in the papers: Image Style Transfer Using Convolutional Neural Net

Cameron 3.1k Jan 02, 2023
DeepMReye: magnetic resonance-based eye tracking using deep neural networks

DeepMReye: magnetic resonance-based eye tracking using deep neural networks

73 Dec 21, 2022
Implementation of H-UCRL Algorithm

Implementation of H-UCRL Algorithm This repository is an implementation of the H-UCRL algorithm introduced in Curi, S., Berkenkamp, F., & Krause, A. (

Sebastian Curi 25 May 20, 2022
C3d-pytorch - Pytorch porting of C3D network, with Sports1M weights

C3D for pytorch This is a pytorch porting of the network presented in the paper Learning Spatiotemporal Features with 3D Convolutional Networks How to

Davide Abati 311 Jan 06, 2023
This is a Pytorch implementation of the paper: Self-Supervised Graph Transformer on Large-Scale Molecular Data.

This is a Pytorch implementation of the paper: Self-Supervised Graph Transformer on Large-Scale Molecular Data.

212 Dec 25, 2022
Deep Reinforcement Learning based Trading Agent for Bitcoin

Deep Trading Agent Deep Reinforcement Learning based Trading Agent for Bitcoin using DeepSense Network for Q function approximation. For complete deta

Kartikay Garg 669 Dec 29, 2022
A simple, clean TensorFlow implementation of Generative Adversarial Networks with a focus on modeling illustrations.

IllustrationGAN A simple, clean TensorFlow implementation of Generative Adversarial Networks with a focus on modeling illustrations. Generated Images

268 Nov 27, 2022
Hybrid CenterNet - Hybrid-supervised object detection / Weakly semi-supervised object detection

Hybrid-Supervised Object Detection System Object detection system trained by hybrid-supervision/weakly semi-supervision (HSOD/WSSOD): This project is

5 Dec 10, 2022
RGB-D Local Implicit Function for Depth Completion of Transparent Objects

RGB-D Local Implicit Function for Depth Completion of Transparent Objects [Project Page] [Paper] Overview This repository maintains the official imple

NVIDIA Research Projects 43 Dec 12, 2022
WaveFake: A Data Set to Facilitate Audio DeepFake Detection

WaveFake: A Data Set to Facilitate Audio DeepFake Detection This is the code repository for our NeurIPS 2021 (Track on Datasets and Benchmarks) paper

Chair for Sys­tems Se­cu­ri­ty 27 Dec 22, 2022
A quick recipe to learn all about Transformers

Transformers have accelerated the development of new techniques and models for natural language processing (NLP) tasks.

DAIR.AI 772 Dec 31, 2022