A simple, clean TensorFlow implementation of Generative Adversarial Networks with a focus on modeling illustrations.

Overview

IllustrationGAN

A simple, clean TensorFlow implementation of Generative Adversarial Networks with a focus on modeling illustrations.

Generated Images

These images were generated by the model after being trained on a custom dataset of about 20,000 anime faces that were automatically cropped from illustrations using a face detector. Generated Images

Checking for Overfitting

It is theoretically possible for the generator network to memorize training set images rather than actually generalizing and learning to produce novel images of its own. To check for this, I randomly generate images and display the "closest" images in the training set according to mean squared error. The top row is randomly generated images, the columns are the closest 5 images in the training set.

Overfitting Check

It is clear that the generator does not merely learn to copy training set images, but rather generalizes and is able to produce its own unique images.

How it Works

Generative Adversarial Networks consist of two neural networks: a discriminator and a generator. The discriminator receives both real images from the training set and generated images produced by the generator. The discriminator outputs the probability that an image is real, so it is trained to output high values for the real images and low values for the generated ones. The generator is trained to produce images that the discriminator thinks are real. Both the discriminator and generator are trainined simultaneously so that they compete against each other. As a result of this, the generator learns to produce more and more realistic images as it trains.

Model Architecture

The model is based on DCGANs, but with a few important differences:

  1. No strided convolutions. The generator uses bilinear upsampling to upscale a feature blob by a factor of 2, followed by a stride-1 convolution layer. The discriminator uses a stride-1 convolution followed by 2x2 max pooling.

  2. Minibatch discrimination. See Improved Techniques for Training GANs for more details.

  3. More fully connected layers in both the generator and discriminator. In DCGANs, both networks have only one fully connected layer.

  4. A novel regularization term applied to the generator network. Normally, increasing the number of fully connected layers in the generator beyond one triggers one of the most common failure modes when training GANs: the generator "collapses" the z-space and produces only a very small number of unique examples. In other words, very different z vectors will produce nearly the same generated image. To fix this, I add a small auxiliary z-predictor network that takes as input the output of the last fully connected layer in the generator, and predicts the value of z. In other words, it attempts to learn the inverse of whatever function the generator fully connected layers learn. The z-predictor network and generator are trained together to predict the value of z. This forces the generator fully connected layers to only learn those transformations that preserve information about z. The result is that the aformentioned collapse no longer occurs, and the generator is able to leverage the power of the additional fully connected layers.

Training the Model

Dependencies: TensorFlow, PrettyTensor, numpy, matplotlib

The custom dataset I used is too large to add to a Github repository; I am currently finding a suitable way to distribute it. Instructions for training the model will be in this readme after I make the dataset available.

TensorFlow GNN is a library to build Graph Neural Networks on the TensorFlow platform.

TensorFlow GNN This is an early (alpha) release to get community feedback. It's under active development and we may break API compatibility in the fut

889 Dec 30, 2022
Ludwig is a toolbox that allows to train and evaluate deep learning models without the need to write code.

Translated in 🇰🇷 Korean/ Ludwig is a toolbox that allows users to train and test deep learning models without the need to write code. It is built on

Ludwig 8.7k Dec 31, 2022
Universal Adversarial Examples in Remote Sensing: Methodology and Benchmark

Universal Adversarial Examples in Remote Sensing: Methodology and Benchmark Yong

19 Dec 17, 2022
Tutorial on scikit-learn and IPython for parallel machine learning

Parallel Machine Learning with scikit-learn and IPython Video recording of this tutorial given at PyCon in 2013. The tutorial material has been rearra

Olivier Grisel 1.6k Dec 26, 2022
SNIPS: Solving Noisy Inverse Problems Stochastically

SNIPS: Solving Noisy Inverse Problems Stochastically This repo contains the official implementation for the paper SNIPS: Solving Noisy Inverse Problem

Bahjat Kawar 35 Nov 09, 2022
Codes for the paper Contrast and Mix: Temporal Contrastive Video Domain Adaptation with Background Mixing

Contrast and Mix (CoMix) The repository contains the codes for the paper Contrast and Mix: Temporal Contrastive Video Domain Adaptation with Backgroun

Computer Vision and Intelligence Research (CVIR) 13 Dec 10, 2022
Code for the paper BERT might be Overkill: A Tiny but Effective Biomedical Entity Linker based on Residual Convolutional Neural Networks

Biomedical Entity Linking This repo provides the code for the paper BERT might be Overkill: A Tiny but Effective Biomedical Entity Linker based on Res

Tuan Manh Lai 24 Oct 24, 2022
PyTorch implementation of DARDet: A Dense Anchor-free Rotated Object Detector in Aerial Images

DARDet PyTorch implementation of "DARDet: A Dense Anchor-free Rotated Object Detector in Aerial Images", [pdf]. Highlights: 1. We develop a new dense

41 Oct 23, 2022
Pytorch implementation of Each Part Matters: Local Patterns Facilitate Cross-view Geo-localization https://arxiv.org/abs/2008.11646

[TCSVT] Each Part Matters: Local Patterns Facilitate Cross-view Geo-localization LPN [Paper] NEWs Prerequisites Python 3.6 GPU Memory = 8G Numpy 1.

46 Dec 14, 2022
docTR by Mindee (Document Text Recognition) - a seamless, high-performing & accessible library for OCR-related tasks powered by Deep Learning.

docTR by Mindee (Document Text Recognition) - a seamless, high-performing & accessible library for OCR-related tasks powered by Deep Learning.

Mindee 1.5k Jan 01, 2023
Using the provided dataset which includes various book features, in order to predict the price of books, using various proposed methods and models.

Using the provided dataset which includes various book features, in order to predict the price of books, using various proposed methods and models.

Nikolas Petrou 1 Jan 13, 2022
kullanışlı ve işinizi kolaylaştıracak bir araç

Hey merhaba! işte çok sorulan sorularının cevabı ve sorunlarının çözümü; Soru= İçinde var denilen birçok şeyi göremiyorum bunun sebebi nedir? Cevap= B

Sexettin 16 Dec 17, 2022
SkipGNN: Predicting Molecular Interactions with Skip-Graph Networks (Scientific Reports)

SkipGNN: Predicting Molecular Interactions with Skip-Graph Networks Molecular interaction networks are powerful resources for the discovery. While dee

Kexin Huang 49 Oct 15, 2022
Data visualization app for H&M competition in kaggle

handm_data_visualize_app Data visualization app by streamlit for H&M competition in kaggle. competition page: https://www.kaggle.com/competitions/h-an

Kyohei Uto 12 Apr 30, 2022
The official repository for BaMBNet

BaMBNet-Pytorch Paper

Junjun Jiang 18 Dec 04, 2022
Running AlphaFold2 (from ColabFold) in Azure Machine Learning

Running AlphaFold2 (from ColabFold) in Azure Machine Learning Colby T. Ford, Ph.D. Companion repository for Medium Post: How to predict many protein s

Colby T. Ford 3 Feb 18, 2022
TPH-YOLOv5: Improved YOLOv5 Based on Transformer Prediction Head for Object Detection on Drone-Captured Scenarios

TPH-YOLOv5 This repo is the implementation of "TPH-YOLOv5: Improved YOLOv5 Based on Transformer Prediction Head for Object Detection on Drone-Captured

cv516Buaa 439 Dec 22, 2022
pytorch implementation of ABC : Auxiliary Balanced Classifier for Class-imbalanced Semi-supervised Learning

ABC:Auxiliary Balanced Classifier for Class-imbalanced Semi-supervised Learning, NeurIPS 2021 pytorch implementation of ABC : Auxiliary Balanced Class

Hyuck Lee 25 Dec 22, 2022
[EMNLP 2020] Keep CALM and Explore: Language Models for Action Generation in Text-based Games

Contextual Action Language Model (CALM) and the ClubFloyd Dataset Code and data for paper Keep CALM and Explore: Language Models for Action Generation

Princeton Natural Language Processing 43 Dec 16, 2022
Implementation of SSMF: Shifting Seasonal Matrix Factorization

SSMF Implementation of SSMF: Shifting Seasonal Matrix Factorization, Koki Kawabata, Siddharth Bhatia, Rui Liu, Mohit Wadhwa, Bryan Hooi. NeurIPS, 2021

Koki Kawabata 9 Jun 10, 2022