Reliable probability face embeddings

Related tags

Deep LearningProbFace
Overview

ProbFace, arxiv

This is a demo code of training and testing [ProbFace] using Tensorflow. ProbFace is a reliable Probabilistic Face Embeddging (PFE) method. The representation of each face will be an Guassian distribution parametrized by (mu, sigma), where mu is the original embedding and sigma is the learned uncertainty. Experiments show that ProbFace could

  • improve the robustness of PFE.
  • simplify the calculation of the multal likelihood score (MLS).
  • improve the recognition performance on the risk-controlled scenarios.

Usage

Preprocessing

Download the MS-Celeb-1M dataset from insightface or face.evoLVe.PyTorch and decode it using this code

Training

  1. Download the base model ResFace64 and unzip the files under log/resface64.

  2. Modify the configuration files under configfig/ folder.

  3. Start the training:

    python train.py configfig/resface64_msarcface.py
    Start Training
    name: resface64
    # epochs: 12
    epoch_size: 1000
    batch_size: 128
    
    Saving variables...
    Saving metagraph...
    Saving variables...
    [1][1] time: 4.19 a 0.8130 att_neg 2.7123 att_pos 0.9874 atte 1.8354 lr 0.0100 mls 0.6820 regu 0.1267 s_L2 0.0025 s_max 0.4467 s_min 0.2813
    [1][101] time: 37.72 a 0.8273 att_neg 2.9455 att_pos 1.0839 atte 1.8704 lr 0.0100 mls 0.6946 regu 0.1256 s_L2 0.0053 s_max 0.4935 s_min 0.2476
    [1][201] time: 38.06 a 0.8533 att_neg 2.9560 att_pos 1.1092 atte 1.9117 lr 0.0100 mls 0.7208 regu 0.1243 s_L2 0.0063 s_max 0.5041 s_min 0.2505
    [1][301] time: 38.82 a 0.7510 att_neg 2.9985 att_pos 1.0223 atte 1.7441 lr 0.0100 mls 0.6209 regu 0.1231 s_L2 0.0053 s_max 0.4552 s_min 0.2251
    [1][401] time: 37.95 a 0.8122 att_neg 2.9846 att_pos 1.0803 atte 1.8501 lr 0.0100 mls 0.6814 regu 0.1219 s_L2 0.0070 s_max 0.4964 s_min 0.2321
    [1][501] time: 38.42 a 0.7307 att_neg 3.0087 att_pos 1.0050 atte 1.8465 lr 0.0100 mls 0.6005 regu 0.1207 s_L2 0.0076 s_max 0.5249 s_min 0.2181
    [1][601] time: 37.69 a 0.7827 att_neg 3.0395 att_pos 1.0703 atte 1.8236 lr 0.0100 mls 0.6552 regu 0.1195 s_L2 0.0062 s_max 0.4952 s_min 0.2211
    [1][701] time: 37.36 a 0.7410 att_neg 2.9971 att_pos 1.0180 atte 1.8086 lr 0.0100 mls 0.6140 regu 0.1183 s_L2 0.0068 s_max 0.4955 s_min 0.2383
    [1][801] time: 37.27 a 0.6889 att_neg 3.0273 att_pos 0.9755 atte 1.7376 lr 0.0100 mls 0.5635 regu 0.1171 s_L2 0.0065 s_max 0.4773 s_min 0.2481
    [1][901] time: 37.34 a 0.7609 att_neg 2.9962 att_pos 1.0403 atte 1.8056 lr 0.0100 mls 0.6367 regu 0.1160 s_L2 0.0064 s_max 0.4861 s_min 0.2272
    Saving variables...
    --- cfp_fp ---
    testing verification..
    (14000, 96, 96, 3)
    # of images: 14000 Current image: 13952 Elapsed time: 00:00:12
    save /_feature.pkl
    sigma_sq (14000, 1)
    sigma_sq (14000, 1)
    sigma_sq [0.19821654 0.25770819 0.29024169 0.35030219 0.40342696 0.44539295
     0.56343746] percentile [0, 10, 30, 50, 70, 90, 100]
    risk_factor 0.0 risk_threshold 0.5634374618530273 keep_idxes 7000 / 7000 Cosine score acc 0.980429 threshold 0.182809
    risk_factor 0.1 risk_threshold 0.4627984762191772 keep_idxes 6301 / 7000 Cosine score acc 0.983336 threshold 0.201020
    risk_factor 0.2 risk_threshold 0.4453900158405304 keep_idxes 5603 / 7000 Cosine score acc 0.985007 threshold 0.203516
    risk_factor 0.3 risk_threshold 0.4327596127986908 keep_idxes 4904 / 7000 Cosine score acc 0.986134 threshold 0.207834
    

Testing

  • Single Image Comparison We use LFW dataset as an example for single image comparison. Make sure you have aligned LFW images using the previous commands. Then you can test it on the LFW dataset with the following command:
    run_eval.bat

Visualization of Uncertainty

Pre-trained Model

ResFace64

Method Download2 Download2
Base Mode Baidu Drive PW:v800 [Google Drive]TODO
MLS Only Baidu Drive PW:72tt [Google Drive]TODO
MLS + L1 + Triplet Baidu Drive PW:sx8a [Google Drive]TODO
ProbFace Baidu Drive PW:pr0m [Google Drive]TODO

ResFace64(0.5)

Method Download2 Download2
Base Mode Baidu Drive PW:zrkl [Google Drive]TODO
MLS Only Baidu Drive PW:et0e [Google Drive]TODO
MLS + L1 + Triplet Baidu Drive PW:glmf [Google Drive]TODO
ProbFace Baidu Drive PW:o4tn [Google Drive]TODO

Test Results:

Method LFW CFP-FF CALFW AgeDB30 CPLFW CFP-FP Vgg2FP Avg
Base Mode 99.80 99.80 95.93 97.93 92.53 98.04 94.92 96.99
MLS Only 99.80 99.76 95.87 97.35 93.01 98.29 95.26 97.05
MLS + L1 + Triplet 99.85 99.83 96.05 97.93 93.17 98.39 95.36 97.22
ProbFace 99.85 99.80 96.02 97.90 93.53 98.41 95.34 97.26

Acknowledgement

This repo is inspired by Probabilistic-Face-Embeddings

Reference

If you find this repo useful, please consider citing:

@misc{chen2021reliable,
    title={Reliable Probabilistic Face Embeddings in the Wild},
    author={Kai Chen and Qi Lv and Taihe Yi and Zhengming Yi},
    year={2021},
    eprint={2102.04075},
    archivePrefix={arXiv},
    primaryClass={cs.CV}
}
Owner
Kaen Chan
Kaen Chan
Python scripts for performing stereo depth estimation using the MobileStereoNet model in Tensorflow Lite.

TFLite-MobileStereoNet Python scripts for performing stereo depth estimation using the MobileStereoNet model in Tensorflow Lite. Stereo depth estimati

Ibai Gorordo 4 Feb 14, 2022
Multi-objective constrained optimization for energy applications via tree ensembles

Multi-objective constrained optimization for energy applications via tree ensembles

C⚙G - Imperial College London 1 Nov 19, 2021
Official implementation of Monocular Quasi-Dense 3D Object Tracking

Monocular Quasi-Dense 3D Object Tracking Monocular Quasi-Dense 3D Object Tracking (QD-3DT) is an online framework detects and tracks objects in 3D usi

Visual Intelligence and Systems Group 441 Dec 20, 2022
NER for Indian languages

CL-NERIL: A Cross-Lingual Model for NER in Indian Languages Code for the paper - https://arxiv.org/abs/2111.11815 Setup Setup a virtual environment Th

Akshara P 0 Nov 24, 2021
Image Restoration Using Swin Transformer for VapourSynth

SwinIR SwinIR function for VapourSynth, based on https://github.com/JingyunLiang/SwinIR. Dependencies NumPy PyTorch, preferably with CUDA. Note that t

Holy Wu 11 Jun 19, 2022
A PyTorch implementation of QANet.

QANet-pytorch NOTICE I'm very busy these months. I'll return to this repo in about 10 days. Introduction An implementation of QANet with PyTorch. Any

H. Z. 343 Nov 03, 2022
A lightweight library designed to accelerate the process of training PyTorch models by providing a minimal

A lightweight library designed to accelerate the process of training PyTorch models by providing a minimal, but extensible training loop which is flexible enough to handle the majority of use cases,

Chris Hughes 110 Dec 23, 2022
FCA: Learning a 3D Full-coverage Vehicle Camouflage for Multi-view Physical Adversarial Attack

FCA: Learning a 3D Full-coverage Vehicle Camouflage for Multi-view Physical Adversarial Attack Case study of the FCA. The code can be find in FCA. Cas

IDRL 21 Dec 15, 2022
Optimized code based on M2 for faster image captioning training

Transformer Captioning This repository contains the code for Transformer-based image captioning. Based on meshed-memory-transformer, we further optimi

lyricpoem 16 Dec 16, 2022
Use .csv files to record, play and evaluate motion capture data.

Purpose These scripts allow you to record mocap data to, and play from .csv files. This approach facilitates parsing of body movement data in statisti

21 Dec 12, 2022
Mip-NeRF: A Multiscale Representation for Anti-Aliasing Neural Radiance Fields.

This repository contains the code release for Mip-NeRF: A Multiscale Representation for Anti-Aliasing Neural Radiance Fields. This implementation is written in JAX, and is a fork of Google's JaxNeRF

Google 625 Dec 30, 2022
Forecasting with Gradient Boosted Time Series Decomposition

ThymeBoost ThymeBoost combines time series decomposition with gradient boosting to provide a flexible mix-and-match time series framework for spicy fo

131 Jan 08, 2023
Modeling CNN layers activity with Gaussian mixture model

GMM-CNN This code package implements the modeling of CNN layers activity with Gaussian mixture model and Inference Graphs visualization technique from

3 Aug 05, 2022
Zalo AI challenge 2021 task hum to song

Zalo AI challenge 2021 task Hum to Song pipeline: Chuẩn bị dữ liệu cho quá trình train: Sửa các file đường dẫn trong config/preprocess.yaml raw_path:

Vo Van Phuc 105 Dec 16, 2022
Unofficial PyTorch implementation of Google AI's VoiceFilter system

VoiceFilter Note from Seung-won (2020.10.25) Hi everyone! It's Seung-won from MINDs Lab, Inc. It's been a long time since I've released this open-sour

MINDs Lab 883 Jan 07, 2023
This repo contains the code for the paper "Efficient hierarchical Bayesian inference for spatio-temporal regression models in neuroimaging" that has been accepted to NeurIPS 2021.

Dugh-NeurIPS-2021 This repo contains the code for the paper "Efficient hierarchical Bayesian inference for spatio-temporal regression models in neuroi

Ali Hashemi 5 Jul 12, 2022
Linear image-to-image translation

Linear (Un)supervised Image-to-Image Translation Examples for linear orthogonal transformations in PCA domain, learned without pairing supervision. Tr

Eitan Richardson 40 Aug 31, 2022
Implementation of ResMLP, an all MLP solution to image classification, in Pytorch

ResMLP - Pytorch Implementation of ResMLP, an all MLP solution to image classification out of Facebook AI, in Pytorch Install $ pip install res-mlp-py

Phil Wang 178 Dec 02, 2022
From this paper "SESNet: A Semantically Enhanced Siamese Network for Remote Sensing Change Detection"

SESNet for remote sensing image change detection It is the implementation of the paper: "SESNet: A Semantically Enhanced Siamese Network for Remote Se

1 May 24, 2022
Official PyTorch implementation of "Contrastive Learning from Extremely Augmented Skeleton Sequences for Self-supervised Action Recognition" in AAAI2022.

AimCLR This is an official PyTorch implementation of "Contrastive Learning from Extremely Augmented Skeleton Sequences for Self-supervised Action Reco

Gty 44 Dec 17, 2022