Modeling CNN layers activity with Gaussian mixture model

Related tags

Deep LearningGMM-CNN
Overview

GMM-CNN

This code package implements the modeling of CNN layers activity with Gaussian mixture model and Inference Graphs visualization technique from the paper "Inference graphs for CNN Interpretation".

Requirements:

  • Graphvis V 0.10.1
  • Tensorflow 1.11.0
  • Keras 2.2.5

Instructions - Work Flow

GMM-CNN model training (main.py):

  1. Specify the directory for saving the model and configuration
  2. Specify the layers names as used in the CNN you wish to model.
  3. Specify the number of Gaussian (clusters) for each layer (as the same order you did in 2.).
  4. Choose between discriminative/generative for training method (as explained in the paper).
  5. Run main.py.

Gathering clusters statistics (gather_clusters_stats.py):

  1. Specify the directory you gave in 1. above.
  2. Run gather_clusters_stats.py script.

Creating clusters images (draw_clusters.py):

  1. Specify the directory you gave in 1. above.
  2. Insert the cluster visualiztion technique (rectangle/patches).
  3. Run draw_clusters.py.

Creating class infernce graphs (draw_class_inference_graph.py):

  1. Specify the directory you gave in 1. above.
  2. Specify the CNN layers name to visualize in the graph and the clusters visualiztion technique for each layer.
  3. Specify the class name you want to build the graph for.
  4. Run draw_class_inference_graph.py.

Creating image infernce graphs (draw_image_inference_graph.py):

  1. Specify the directory you gave in 1. above.
  2. Specify the CNN layers name to visualize in the graph and the clusters visualiztion technique for each layer.
  3. Specify whther you want to analyze a well-classified images or wrongly-classified images.
  4. Specify the number of images/graphs you want to build.
  5. Run draw_image_inference_graph.py.
Drone Task1 - Drone Task1 With Python

Drone_Task1 Matching Results 3.mp4 1.mp4

MLV Lab (Machine Learning and Vision Lab at Korea University) 11 Nov 14, 2022
Unet network with mean teacher for altrasound image segmentation

Unet network with mean teacher for altrasound image segmentation

5 Nov 21, 2022
CS506-Spring2022 - Code and Slides for Boston University CS 506

CS 506 - Computational Tools for Data Science Code, slides, and notes for Boston

Lance Galletti 17 May 06, 2022
AdaSpeech 2: Adaptive Text to Speech with Untranscribed Data

AdaSpeech 2: Adaptive Text to Speech with Untranscribed Data [WIP] Unofficial Pytorch implementation of AdaSpeech 2. Requirements : All code written i

Rishikesh (ऋषिकेश) 63 Dec 28, 2022
A static analysis library for computing graph representations of Python programs suitable for use with graph neural networks.

python_graphs This package is for computing graph representations of Python programs for machine learning applications. It includes the following modu

Google Research 258 Dec 29, 2022
HPRNet: Hierarchical Point Regression for Whole-Body Human Pose Estimation

HPRNet: Hierarchical Point Regression for Whole-Body Human Pose Estimation Official PyTroch implementation of HPRNet. HPRNet: Hierarchical Point Regre

Nermin Samet 53 Dec 04, 2022
fastgradio is a python library to quickly build and share gradio interfaces of your trained fastai models.

fastgradio is a python library to quickly build and share gradio interfaces of your trained fastai models.

Ali Abdalla 34 Jan 05, 2023
Rename Images with Auto Generated Neural Image Captions

Recaption Images with Generated Neural Image Caption Example Usage: Commandline: Recaption all images from folder /home/feng/Downloads/images to folde

feng wang 3 May 01, 2022
This is a collection of our NAS and Vision Transformer work.

This is a collection of our NAS and Vision Transformer work.

Microsoft 828 Dec 28, 2022
Lightweight tool to perform MITM attack on local network

ARPSpy - A lightweight tool to perform MITM attack Using many library to perform ARP Spoof and auto-sniffing HTTP packet containing credential. (Never

MinhItachi 8 Aug 28, 2022
Code for the paper: Learning Adversarially Robust Representations via Worst-Case Mutual Information Maximization (https://arxiv.org/abs/2002.11798)

Representation Robustness Evaluations Our implementation is based on code from MadryLab's robustness package and Devon Hjelm's Deep InfoMax. For all t

Sicheng 19 Dec 07, 2022
A small demonstration of using WebDataset with ImageNet and PyTorch Lightning

A small demonstration of using WebDataset with ImageNet and PyTorch Lightning This is a small repo illustrating how to use WebDataset on ImageNet. usi

50 Dec 16, 2022
An implementation of IMLE-Net: An Interpretable Multi-level Multi-channel Model for ECG Classification

IMLE-Net: An Interpretable Multi-level Multi-channel Model for ECG Classification The repostiory consists of the code, results and data set links for

12 Dec 26, 2022
Source code for our paper "Improving Empathetic Response Generation by Recognizing Emotion Cause in Conversations"

Source code for our paper "Improving Empathetic Response Generation by Recognizing Emotion Cause in Conversations" this repository is maintained by bo

Yuhan Liu 24 Nov 29, 2022
PyTorch implementation of HDN(Homography Decomposition Networks) for planar object tracking

Homography Decomposition Networks for Planar Object Tracking This project is the offical PyTorch implementation of HDN(Homography Decomposition Networ

CaptainHook 48 Dec 15, 2022
PyTorch implementation of "Simple and Deep Graph Convolutional Networks"

Simple and Deep Graph Convolutional Networks This repository contains a PyTorch implementation of "Simple and Deep Graph Convolutional Networks".(http

chenm 253 Dec 08, 2022
Unified unsupervised and semi-supervised domain adaptation network for cross-scenario face anti-spoofing, Pattern Recognition

USDAN The implementation of Unified unsupervised and semi-supervised domain adaptation network for cross-scenario face anti-spoofing, which is accepte

11 Nov 03, 2022
[SIGGRAPH 2020] Attribute2Font: Creating Fonts You Want From Attributes

Attr2Font Introduction This is the official PyTorch implementation of the Attribute2Font: Creating Fonts You Want From Attributes. Paper: arXiv | Rese

Yue Gao 200 Dec 15, 2022
Official pytorch implementation of paper Dual-Level Collaborative Transformer for Image Captioning (AAAI 2021).

Dual-Level Collaborative Transformer for Image Captioning This repository contains the reference code for the paper Dual-Level Collaborative Transform

lyricpoem 160 Dec 11, 2022
Algorithm to texture 3D reconstructions from multi-view stereo images

MVS-Texturing Welcome to our project that textures 3D reconstructions from images. This project focuses on 3D reconstructions generated using structur

Nils Moehrle 766 Jan 04, 2023