Generative Flow Networks

Related tags

Deep Learninggflownet
Overview

Flow Network based Generative Models for Non-Iterative Diverse Candidate Generation

Implementation for our paper, submitted to NeurIPS 2021 (also check this high-level blog post).

This is a minimum working version of the code used for the paper, which is extracted from the internal repository of the Mila Molecule Discovery project. Original commits are lost here, but the credit for this code goes to @bengioe, @MJ10 and @MKorablyov (see paper).

Grid experiments

Requirements for base experiments:

  • torch numpy scipy tqdm

Additional requirements for active learning experiments:

  • botorch gpytorch

Molecule experiments

Additional requirements:

  • pandas rdkit torch_geometric h5py
  • a few biochemistry programs, see mols/Programs/README

For rdkit in particular we found it to be easier to install through (mini)conda. torch_geometric has non-trivial installation instructions.

We compress the 300k molecule dataset for size. To uncompress it, run cd mols/data/; gunzip docked_mols.h5.gz.

We omit docking routines since they are part of a separate contribution still to be submitted. These are available on demand, please do reach out to [email protected] or [email protected].

Comments
  • Error: Tensors used as indices must be long, byte or bool tensors

    Error: Tensors used as indices must be long, byte or bool tensors

    Dear authors, thanks for sharing the code for this wonderful work!

    I am currently trying to run the naive gflownet training code in molecular docking setting by running python gflownet.py under the mols directory. I have unzipped the datasets and have all requirements installed. And I have successfully run the model in the toy grid environment.

    However, I got this error when I run in the mols environment:

    Exception while sampling: tensors used as indices must be long, byte or bool tensors

    And when I further look up, it seems like the problem occurs around the line 70 in model_block.py. I tried to print out the stem_block_batch_idx but it doesn't seems like could be transfered to long type directly, which is required by an index:

    tensor([[-8.4156e-02, -4.2767e-02, -7.2483e-02, -3.3011e-02, -1.1865e-02, 2.0981e-03, 1.3293e-02, -7.3515e-03, -4.1853e-02, 2.1048e-02, 3.8597e-02, -1.5558e-02, 2.1581e-02, 4.9257e-03, 9.5167e-02, 4.0965e-02, 2.0146e-02, -5.5610e-02, -3.5318e-02, -3.1394e-02, 7.2078e-02, 1.8894e-02, -3.0249e-02, 2.9740e-02, 5.6950e-02, -3.8425e-02, 2.8620e-02, 9.2052e-02, -8.5357e-03, 1.6788e-02, 7.7801e-02, -4.2119e-02, 1.3606e-02, 7.5316e-02, 4.7131e-02, -4.3429e-03, 1.4157e-04, 2.0939e-02, -2.3499e-02, -6.5888e-02, -2.8960e-02, 3.1548e-02, -9.2680e-03, 5.4192e-02, -9.6579e-03, 2.0602e-02, 1.8935e-02, 4.1228e-03, -6.3467e-02, 3.6747e-02, 1.4168e-02, -6.1473e-03, -1.9472e-02, -3.3970e-02, -5.7308e-03, -4.6021e-02, -3.8956e-02, 4.7375e-02, -8.4562e-02, -1.0087e-02, 2.0478e-02, -6.8286e-02, 5.4663e-02, -5.1468e-02, 1.2617e-02, 2.4625e-02, 5.2167e-02, 5.7779e-02, -5.7788e-02, -1.3323e-02, 1.3913e-02, -7.4439e-02, -4.0981e-02, 5.0797e-02, -5.6230e-02, -5.0963e-02, -5.5488e-02, -2.7339e-02, 1.0469e-02, 3.4695e-02, -3.2623e-02, 7.6694e-03, -5.8748e-03, 7.0495e-02, -2.2805e-02, -5.4334e-03, -2.1636e-02, 1.9597e-02, 6.2370e-02, -2.4995e-02, 1.6165e-02, -4.6878e-03, 2.9743e-02, 1.2653e-02, -5.4271e-02, 1.1247e-02, -3.8340e-03, -4.7489e-02, 1.5719e-02, 3.2552e-02, 6.0665e-02, -1.2330e-02, 2.6115e-02, -2.7376e-02, 3.4152e-02, -1.0086e-02, -2.4257e-02, 3.2202e-02, -3.2659e-02, 8.6094e-02, -3.1996e-02, 7.8751e-02, 4.5367e-02, -3.8693e-02, -3.6531e-02, 6.7311e-03, 3.2884e-02, -3.2774e-02, -3.8855e-02, 2.8814e-02, 4.3942e-02, -1.3374e-02, 3.0905e-02, -7.0064e-02, -5.7230e-03, 4.5093e-02, 3.8167e-02, -3.0602e-02, -4.0387e-02, -1.5985e-02, -9.5962e-02, -1.1354e-02, 2.0879e-02, 1.4092e-02, -3.8405e-02, 1.4337e-02, -6.0682e-02, -9.0190e-03, -5.0898e-02, -4.7344e-02, 4.1045e-02, -6.7031e-02, 8.8112e-02, 3.2149e-02, 3.7748e-02, -4.0757e-02, 1.4378e-02, -1.0749e-01, 6.1679e-02, -6.7268e-03, -2.7889e-02, -5.9315e-02, -5.5883e-02, -2.6489e-02, 7.3640e-02, 1.8273e-02, -5.2330e-02, -7.7003e-05, 6.8413e-04, -1.4364e-01, -1.9389e-02, 4.5649e-02, -4.0468e-02, -4.2819e-02, 4.5874e-02, -1.6481e-02, 1.2627e-02, -8.4941e-02, -3.7458e-02, 2.1359e-02, -9.2863e-02, -3.4932e-03, 7.1990e-02, 6.2144e-02, 8.1462e-02, -2.0569e-02, 5.9194e-02, 1.6996e-03, 8.0618e-03, 6.1753e-02, 4.1602e-02, 1.0910e-02, 2.0523e-02, -9.9781e-04, 1.9131e-02, -1.0267e-02, -9.4474e-02, -3.5725e-02, 9.9953e-03, -4.3195e-02, -7.9051e-02, -3.1881e-02, 9.2158e-03, -9.6167e-04, -2.7508e-02, 7.1478e-02, -5.4107e-02, 8.0026e-02, -1.8887e-02, 4.6941e-02, 6.5166e-02, 1.2000e-02, 3.9906e-02, -2.8206e-02, 3.7483e-02, 3.5408e-02, -2.5863e-02, 2.3528e-02, 7.1814e-03, 8.0863e-02, -1.3736e-02, -8.5978e-02, -4.1238e-02, -1.2545e-02, 5.5479e-02, 7.3487e-03, 8.9125e-02, -3.4814e-02, -4.5358e-02, 4.9893e-02, 3.5286e-02, 3.2084e-02, 5.0868e-02, 2.3549e-02, -9.2907e-02, -6.9315e-03, -1.3088e-02, 8.7066e-02, 1.1554e-02, 1.3771e-02, -1.7489e-02, -5.2921e-02, 9.2110e-03, 1.6766e-02, 4.8030e-02, 1.4481e-02, 2.9254e-03, 3.5795e-02, 1.0397e-01, -2.0675e-03, -2.9916e-02, -5.3299e-02, -2.1396e-02, -5.3189e-02, 3.2805e-02, -2.6538e-03, -2.6352e-02, -1.2823e-02, 6.1972e-02, 5.4822e-02, 4.5579e-02, -3.6638e-02, 8.1013e-03, -5.6014e-02, 1.5187e-02, -6.5561e-02]], device='cuda:0', dtype=torch.float64, grad_fn=)

    I wonder if I am running the code in the correct way. Is this index correct and if so, do you know what's happening?

    opened by wenhao-gao 3
  • About Reproducibility Issues

    About Reproducibility Issues

    Hi there,

    Thank you very much for sharing the source codes.

    For reproducibility, I modified the codes as follows,

    https://github.com/GFNOrg/gflownet/blob/831a6989d1abd5c05123ec84654fb08629d9bc38/mols/gflownet.py#L84

    ---> self.train_rng = np.random.RandomState(142857)

    as well as to add

    torch.manual_seed(142857)
    torch.cuda.manual_seed(142857)
    torch.cuda.manual_seed_all(142857)
    

    However, I encountered an issue. I ran it more than 3 times with the same random seed, but the results are totally different (although they are close). I didn't modify other parts, except for addressing package compatibility issues.

    0 [1152.62, 112.939, 23.232] 100 [460.257, 44.253, 17.728] 200 [68.114, 6.007, 8.045]

    0 [1151.024, 112.603, 24.993] 100 [471.219, 45.525, 15.964] 200 [66.349, 6.174, 4.607]

    0 [1263.066, 124.094, 22.128] 100 [467.747, 44.899, 18.76] 200 [61.992, 5.715, 4.841]

    I am wondering whether you encountered such an issue before.

    Best,

    Dong

    opened by dongqian0206 2
  • Reward signal for grid environment?

    Reward signal for grid environment?

    Hello, I'm a bit confused where this reward function comes from: https://github.com/GFNOrg/gflownet/blob/831a6989d1abd5c05123ec84654fb08629d9bc38/grid/toy_grid_dag.py#L97

    My understanding is that the reward should be as defined in the paper (https://i.samkg.dev/2233/firefox_xGnEaZVBlN.png) - are these two equivalent in some way?

    opened by SamKG 1
  • Potential bug with `FlowNetAgent.sample_many`

    Potential bug with `FlowNetAgent.sample_many`

    Hi there!

    Thanks for sharing the code and just wanted to say I've enjoyed your paper. I was reading your code and noticed that there might be a subtle bug in the grid-env dag script. I might also have read it wrong...

    https://github.com/bengioe/gflownet/blob/dddfbc522255faa5d6a76249633c94a54962cbcb/grid/toy_grid_dag.py#L316-L320

    On line 316, we zip two things: zip([e for d, e in zip(done, self.envs) if not d], acts)

    Here done is a vector of bools of length batch-size, self.envs is a list of GridEnv of length n-envs or buffer-size, and acts is a vector of ints of length (n-envs or buffer-size,).

    By default, all the lengths of the above objects should be 16.

    I was reading through the code, and noticed that if any of the elements in done are True, then on line 316 we filter them out with if not d. If env[0] was "done", then we would have a list of 15 envs, basically self.envs[1:]. Then when you zip up the actions and the shorter list envs, the actions will be aligned incorrectly... We will basically end up with self.envs[1:] being aligned to actions act[:-1]. As a result, step is now length 15, and on the next line, we again line up the incorrect actions of length 16 with our step list of length 16.

    Perhaps we need to filter act based on the done vector? E.g act = act[done] after line 316?

    Maybe I've got this wrong, so apologies for the noise if that's the case, but thought I'd leave a note in case what I'm suggesting is the case.

    All the best!

    opened by fedden 1
  • Clarification regarding the number of molecular building blocks. Why they are different from JT-VAE?

    Clarification regarding the number of molecular building blocks. Why they are different from JT-VAE?

    Hello,

    First, I really enjoyed reading the paper. Amazing work!

    I have a question regarding the number of building blocks used for generating small molecules. Appendix A.3 of the paper states that there are a total of 105 unique building blocks (after accounting for different attachment points) and that they were obtained by the process suggested by the JT-VAE paper. (Jin et al. (2020)). However, in the JT-VAE paper, the total vocabulary size is $|\chi|=780$ obtained from the same ZINC dataset. My understanding is they are both the same. If that is correct, why are the number of building blocks different here? What am I missing? If they are not the same, can you please explain the difference?

    Thank you so much for your help

    opened by Srilok 1
Releases(paper_version)
Owner
Emmanuel Bengio
Emmanuel Bengio
PURE: End-to-End Relation Extraction

PURE: End-to-End Relation Extraction This repository contains (PyTorch) code and pre-trained models for PURE (the Princeton University Relation Extrac

Princeton Natural Language Processing 657 Jan 09, 2023
3.8% and 18.3% on CIFAR-10 and CIFAR-100

Wide Residual Networks This code was used for experiments with Wide Residual Networks (BMVC 2016) http://arxiv.org/abs/1605.07146 by Sergey Zagoruyko

Sergey Zagoruyko 1.2k Dec 29, 2022
A Graph Neural Network Tool for Recovering Dense Sub-graphs in Random Dense Graphs.

PYGON A Graph Neural Network Tool for Recovering Dense Sub-graphs in Random Dense Graphs. Installation This code requires to install and run the graph

Yoram Louzoun's Lab 0 Jun 25, 2021
Deep learning with dynamic computation graphs in TensorFlow

TensorFlow Fold TensorFlow Fold is a library for creating TensorFlow models that consume structured data, where the structure of the computation graph

1.8k Dec 28, 2022
3rd Place Solution for ICCV 2021 Workshop SSLAD Track 3A - Continual Learning Classification Challenge

Online Continual Learning via Multiple Deep Metric Learning and Uncertainty-guided Episodic Memory Replay 3rd Place Solution for ICCV 2021 Workshop SS

Rifki Kurniawan 6 Nov 10, 2022
Efficient Sharpness-aware Minimization for Improved Training of Neural Networks

Efficient Sharpness-aware Minimization for Improved Training of Neural Networks Code for “Efficient Sharpness-aware Minimization for Improved Training

Angusdu 32 Oct 18, 2022
Small utility to demangle Nim symbols in callgrind files

nim_callgrind A small utility to demangle Nim symbols from callgrind files. Usage Run your (Nim) program with something like this: valgrind --tool=cal

kraptor 3 Feb 15, 2022
"Projelerle Yapay Zeka Ve Bilgisayarlı Görü" Kitabımın projeleri

"Projelerle Yapay Zeka Ve Bilgisayarlı Görü" Kitabımın projeleri Bu Github Reposundaki tüm projeler; kaleme almış olduğum "Projelerle Yapay Zekâ ve Bi

Ümit Aksoylu 4 Aug 03, 2022
A lightweight library designed to accelerate the process of training PyTorch models by providing a minimal

A lightweight library designed to accelerate the process of training PyTorch models by providing a minimal, but extensible training loop which is flexible enough to handle the majority of use cases,

Chris Hughes 110 Dec 23, 2022
Developed an optimized algorithm which finds the most optimal path between 2 points in a 3D Maze using various AI search techniques like BFS, DFS, UCS, Greedy BFS and A*

Developed an optimized algorithm which finds the most optimal path between 2 points in a 3D Maze using various AI search techniques like BFS, DFS, UCS, Greedy BFS and A*. The algorithm was extremely

1 Mar 28, 2022
Perform Linear Classification with Multi-way Data

MultiwayClassification This is an R package to perform linear classification for data with multi-way structure. The distance-weighted discrimination (

Eric F. Lock 2 Dec 15, 2020
Pytorch implemenation of Stochastic Multi-Label Image-to-image Translation (SMIT)

SMIT: Stochastic Multi-Label Image-to-image Translation This repository provides a PyTorch implementation of SMIT. SMIT can stochastically translate a

Biomedical Computer Vision Group @ Uniandes 37 Mar 01, 2022
Code for the paper "Can Active Learning Preemptively Mitigate Fairness Issues?" presented at RAI 2021.

Can Active Learning Preemptively Mitigate Fairness Issues? Code for the paper "Can Active Learning Preemptively Mitigate Fairness Issues?" presented a

ElementAI 7 Aug 12, 2022
A toolset of Python programs for signal modeling and indentification via sparse semilinear autoregressors.

SPAAR Description A toolset of Python programs for signal modeling via sparse semilinear autoregressors. References Vides, F. (2021). Computing Semili

Fredy Vides 0 Oct 30, 2021
This is a repository for a semantic segmentation inference API using the OpenVINO toolkit

BMW-IntelOpenVINO-Segmentation-Inference-API This is a repository for a semantic segmentation inference API using the OpenVINO toolkit. It's supported

BMW TechOffice MUNICH 34 Nov 24, 2022
HashNeRF-pytorch - Pure PyTorch Implementation of NVIDIA paper on Instant Training of Neural Graphics primitives

HashNeRF-pytorch Instant-NGP recently introduced a Multi-resolution Hash Encodin

Yash Sanjay Bhalgat 616 Jan 06, 2023
Neural Magic Eye: Learning to See and Understand the Scene Behind an Autostereogram, arXiv:2012.15692.

Neural Magic Eye Preprint | Project Page | Colab Runtime Official PyTorch implementation of the preprint paper "NeuralMagicEye: Learning to See and Un

Zhengxia Zou 56 Jul 15, 2022
MoCoGAN: Decomposing Motion and Content for Video Generation

MoCoGAN: Decomposing Motion and Content for Video Generation This repository contains an implementation and further details of MoCoGAN: Decomposing Mo

Sergey Tulyakov 514 Dec 18, 2022
Intro-to-dl - Resources for "Introduction to Deep Learning" course.

Introduction to Deep Learning course resources https://www.coursera.org/learn/intro-to-deep-learning Running on Google Colab (tested for all weeks) Go

Advanced Machine Learning specialisation by HSE 761 Dec 24, 2022
BanditPAM: Almost Linear-Time k-Medoids Clustering

BanditPAM: Almost Linear-Time k-Medoids Clustering This repo contains a high-performance implementation of BanditPAM from BanditPAM: Almost Linear-Tim

254 Dec 12, 2022