BPEmb is a collection of pre-trained subword embeddings in 275 languages, based on Byte-Pair Encoding (BPE) and trained on Wikipedia.

Overview

BPEmb

BPEmb is a collection of pre-trained subword embeddings in 275 languages, based on Byte-Pair Encoding (BPE) and trained on Wikipedia. Its intended use is as input for neural models in natural language processing.

WebsiteUsageDownloadMultiBPEmbPaper (pdf)Citing BPEmb

Usage

Install BPEmb with pip:

pip install bpemb

Embeddings and SentencePiece models will be downloaded automatically the first time you use them.

>>> from bpemb import BPEmb
# load English BPEmb model with default vocabulary size (10k) and 50-dimensional embeddings
>>> bpemb_en = BPEmb(lang="en", dim=50)
downloading https://nlp.h-its.org/bpemb/en/en.wiki.bpe.vs10000.model
downloading https://nlp.h-its.org/bpemb/en/en.wiki.bpe.vs10000.d50.w2v.bin.tar.gz

You can do two main things with BPEmb. The first is subword segmentation:

>> bpemb_zh = BPEmb(lang="zh", vs=100000) # apply Chinese BPE subword segmentation model >>> bpemb_zh.encode("这是一个中文句子") # "This is a Chinese sentence." ['▁这是一个', '中文', '句子'] # ["This is a", "Chinese", "sentence"] ">
# apply English BPE subword segmentation model
>>> bpemb_en.encode("Stratford")
['▁strat', 'ford']
# load Chinese BPEmb model with vocabulary size 100k and default (100-dim) embeddings
>>> bpemb_zh = BPEmb(lang="zh", vs=100000)
# apply Chinese BPE subword segmentation model
>>> bpemb_zh.encode("这是一个中文句子")  # "This is a Chinese sentence."
['▁这是一个', '中文', '句子']  # ["This is a", "Chinese", "sentence"]

If / how a word gets split depends on the vocabulary size. Generally, a smaller vocabulary size will yield a segmentation into many subwords, while a large vocabulary size will result in frequent words not being split:

vocabulary size segmentation
1000 ['▁str', 'at', 'f', 'ord']
3000 ['▁str', 'at', 'ford']
5000 ['▁str', 'at', 'ford']
10000 ['▁strat', 'ford']
25000 ['▁stratford']
50000 ['▁stratford']
100000 ['▁stratford']
200000 ['▁stratford']

The second purpose of BPEmb is to provide pretrained subword embeddings:

>> type(bpemb_en.vectors) numpy.ndarray >>> bpemb_en.vectors.shape (10000, 50) >>> bpemb_zh.vectors.shape (100000, 100) ">
# Embeddings are wrapped in a gensim KeyedVectors object
>>> type(bpemb_zh.emb)
gensim.models.keyedvectors.Word2VecKeyedVectors
# You can use BPEmb objects like gensim KeyedVectors
>>> bpemb_en.most_similar("ford")
[('bury', 0.8745079040527344),
 ('ton', 0.8725000619888306),
 ('well', 0.871537446975708),
 ('ston', 0.8701574206352234),
 ('worth', 0.8672043085098267),
 ('field', 0.859795331954956),
 ('ley', 0.8591548204421997),
 ('ington', 0.8126075267791748),
 ('bridge', 0.8099068999290466),
 ('brook', 0.7979353070259094)]
>>> type(bpemb_en.vectors)
numpy.ndarray
>>> bpemb_en.vectors.shape
(10000, 50)
>>> bpemb_zh.vectors.shape
(100000, 100)

To use subword embeddings in your neural network, either encode your input into subword IDs:

>> bpemb_zh.vectors[ids].shape (3, 100) ">
>>> ids = bpemb_zh.encode_ids("这是一个中文句子")
[25950, 695, 20199]
>>> bpemb_zh.vectors[ids].shape
(3, 100)

Or use the embed method:

# apply Chinese subword segmentation and perform embedding lookup
>>> bpemb_zh.embed("这是一个中文句子").shape
(3, 100)

Downloads for each language

ab (Abkhazian)ace (Achinese)ady (Adyghe)af (Afrikaans)ak (Akan)als (Alemannic)am (Amharic)an (Aragonese)ang (Old English)ar (Arabic)arc (Official Aramaic)arz (Egyptian Arabic)as (Assamese)ast (Asturian)atj (Atikamekw)av (Avaric)ay (Aymara)az (Azerbaijani)azb (South Azerbaijani)

ba (Bashkir)bar (Bavarian)bcl (Central Bikol)be (Belarusian)bg (Bulgarian)bi (Bislama)bjn (Banjar)bm (Bambara)bn (Bengali)bo (Tibetan)bpy (Bishnupriya)br (Breton)bs (Bosnian)bug (Buginese)bxr (Russia Buriat)

ca (Catalan)cdo (Min Dong Chinese)ce (Chechen)ceb (Cebuano)ch (Chamorro)chr (Cherokee)chy (Cheyenne)ckb (Central Kurdish)co (Corsican)cr (Cree)crh (Crimean Tatar)cs (Czech)csb (Kashubian)cu (Church Slavic)cv (Chuvash)cy (Welsh)

da (Danish)de (German)din (Dinka)diq (Dimli)dsb (Lower Sorbian)dty (Dotyali)dv (Dhivehi)dz (Dzongkha)

ee (Ewe)el (Modern Greek)en (English)eo (Esperanto)es (Spanish)et (Estonian)eu (Basque)ext (Extremaduran)

fa (Persian)ff (Fulah)fi (Finnish)fj (Fijian)fo (Faroese)fr (French)frp (Arpitan)frr (Northern Frisian)fur (Friulian)fy (Western Frisian)

ga (Irish)gag (Gagauz)gan (Gan Chinese)gd (Scottish Gaelic)gl (Galician)glk (Gilaki)gn (Guarani)gom (Goan Konkani)got (Gothic)gu (Gujarati)gv (Manx)

ha (Hausa)hak (Hakka Chinese)haw (Hawaiian)he (Hebrew)hi (Hindi)hif (Fiji Hindi)hr (Croatian)hsb (Upper Sorbian)ht (Haitian)hu (Hungarian)hy (Armenian)

ia (Interlingua)id (Indonesian)ie (Interlingue)ig (Igbo)ik (Inupiaq)ilo (Iloko)io (Ido)is (Icelandic)it (Italian)iu (Inuktitut)

ja (Japanese)jam (Jamaican Creole English)jbo (Lojban)jv (Javanese)

ka (Georgian)kaa (Kara-Kalpak)kab (Kabyle)kbd (Kabardian)kbp (Kabiyè)kg (Kongo)ki (Kikuyu)kk (Kazakh)kl (Kalaallisut)km (Central Khmer)kn (Kannada)ko (Korean)koi (Komi-Permyak)krc (Karachay-Balkar)ks (Kashmiri)ksh (Kölsch)ku (Kurdish)kv (Komi)kw (Cornish)ky (Kirghiz)

la (Latin)lad (Ladino)lb (Luxembourgish)lbe (Lak)lez (Lezghian)lg (Ganda)li (Limburgan)lij (Ligurian)lmo (Lombard)ln (Lingala)lo (Lao)lrc (Northern Luri)lt (Lithuanian)ltg (Latgalian)lv (Latvian)

mai (Maithili)mdf (Moksha)mg (Malagasy)mh (Marshallese)mhr (Eastern Mari)mi (Maori)min (Minangkabau)mk (Macedonian)ml (Malayalam)mn (Mongolian)mr (Marathi)mrj (Western Mari)ms (Malay)mt (Maltese)mwl (Mirandese)my (Burmese)myv (Erzya)mzn (Mazanderani)

na (Nauru)nap (Neapolitan)nds (Low German)ne (Nepali)new (Newari)ng (Ndonga)nl (Dutch)nn (Norwegian Nynorsk)no (Norwegian)nov (Novial)nrm (Narom)nso (Pedi)nv (Navajo)ny (Nyanja)

oc (Occitan)olo (Livvi)om (Oromo)or (Oriya)os (Ossetian)

pa (Panjabi)pag (Pangasinan)pam (Pampanga)pap (Papiamento)pcd (Picard)pdc (Pennsylvania German)pfl (Pfaelzisch)pi (Pali)pih (Pitcairn-Norfolk)pl (Polish)pms (Piemontese)pnb (Western Panjabi)pnt (Pontic)ps (Pushto)pt (Portuguese)

qu (Quechua)

rm (Romansh)rmy (Vlax Romani)rn (Rundi)ro (Romanian)ru (Russian)rue (Rusyn)rw (Kinyarwanda)

sa (Sanskrit)sah (Yakut)sc (Sardinian)scn (Sicilian)sco (Scots)sd (Sindhi)se (Northern Sami)sg (Sango)sh (Serbo-Croatian)si (Sinhala)sk (Slovak)sl (Slovenian)sm (Samoan)sn (Shona)so (Somali)sq (Albanian)sr (Serbian)srn (Sranan Tongo)ss (Swati)st (Southern Sotho)stq (Saterfriesisch)su (Sundanese)sv (Swedish)sw (Swahili)szl (Silesian)

ta (Tamil)tcy (Tulu)te (Telugu)tet (Tetum)tg (Tajik)th (Thai)ti (Tigrinya)tk (Turkmen)tl (Tagalog)tn (Tswana)to (Tonga)tpi (Tok Pisin)tr (Turkish)ts (Tsonga)tt (Tatar)tum (Tumbuka)tw (Twi)ty (Tahitian)tyv (Tuvinian)

udm (Udmurt)ug (Uighur)uk (Ukrainian)ur (Urdu)uz (Uzbek)

ve (Venda)vec (Venetian)vep (Veps)vi (Vietnamese)vls (Vlaams)vo (Volapük)

wa (Walloon)war (Waray)wo (Wolof)wuu (Wu Chinese)

xal (Kalmyk)xh (Xhosa)xmf (Mingrelian)

yi (Yiddish)yo (Yoruba)

za (Zhuang)zea (Zeeuws)zh (Chinese)zu (Zulu)

MultiBPEmb

multi (multilingual)

Citing BPEmb

If you use BPEmb in academic work, please cite:

@InProceedings{heinzerling2018bpemb,
  author = {Benjamin Heinzerling and Michael Strube},
  title = "{BPEmb: Tokenization-free Pre-trained Subword Embeddings in 275 Languages}",
  booktitle = {Proceedings of the Eleventh International Conference on Language Resources and Evaluation (LREC 2018)},
  year = {2018},
  month = {May 7-12, 2018},
  address = {Miyazaki, Japan},
  editor = {Nicoletta Calzolari (Conference chair) and Khalid Choukri and Christopher Cieri and Thierry Declerck and Sara Goggi and Koiti Hasida and Hitoshi Isahara and Bente Maegaard and Joseph Mariani and Hélène Mazo and Asuncion Moreno and Jan Odijk and Stelios Piperidis and Takenobu Tokunaga},
  publisher = {European Language Resources Association (ELRA)},
  isbn = {979-10-95546-00-9},
  language = {english}
  }
Sapiens is a human antibody language model based on BERT.

Sapiens: Human antibody language model ____ _ / ___| __ _ _ __ (_) ___ _ __ ___ \___ \ / _` | '_ \| |/ _ \ '

Merck Sharp & Dohme Corp. a subsidiary of Merck & Co., Inc. 13 Nov 20, 2022
A modular framework for vision & language multimodal research from Facebook AI Research (FAIR)

MMF is a modular framework for vision and language multimodal research from Facebook AI Research. MMF contains reference implementations of state-of-t

Facebook Research 5.1k Dec 26, 2022
原神抽卡记录数据集-Genshin Impact gacha data

提要 持续收集原神抽卡记录中 可以使用抽卡记录导出工具导出抽卡记录的json,将json文件发送至[email protected],我会在清除个人信息后

117 Dec 27, 2022
The code from the whylogs workshop in DataTalks.Club on 29 March 2022

whylogs Workshop The code from the whylogs workshop in DataTalks.Club on 29 March 2022 whylogs - The open source standard for data logging (Don't forg

DataTalksClub 12 Sep 05, 2022
基于GRU网络的句子判断程序/A program based on GRU network for judging sentences

SentencesJudger SentencesJudger 是一个基于GRU神经网络的句子判断程序,基本的功能是判断文章中的某一句话是否为一个优美的句子。 English 如何使用SentencesJudger 确认Python运行环境 安装pyTorch与LTP python3 -m pip

8 Mar 24, 2022
[EMNLP 2021] LM-Critic: Language Models for Unsupervised Grammatical Error Correction

LM-Critic: Language Models for Unsupervised Grammatical Error Correction This repo provides the source code & data of our paper: LM-Critic: Language M

Michihiro Yasunaga 98 Nov 24, 2022
Spokestack is a library that allows a user to easily incorporate a voice interface into any Python application with a focus on embedded systems.

Welcome to Spokestack Python! This library is intended for developing voice interfaces in Python. This can include anything from Raspberry Pi applicat

Spokestack 133 Sep 20, 2022
Code to reproduce the results of the paper 'Towards Realistic Few-Shot Relation Extraction' (EMNLP 2021)

Realistic Few-Shot Relation Extraction This repository contains code to reproduce the results in the paper "Towards Realistic Few-Shot Relation Extrac

Bloomberg 8 Nov 09, 2022
Winner system (DAMO-NLP) of SemEval 2022 MultiCoNER shared task over 10 out of 13 tracks.

KB-NER: a Knowledge-based System for Multilingual Complex Named Entity Recognition The code is for the winner system (DAMO-NLP) of SemEval 2022 MultiC

116 Dec 27, 2022
This code is the implementation of Text Emotion Recognition (TER) with linguistic features

APSIPA-TER This code is the implementation of Text Emotion Recognition (TER) with linguistic features. The network model is BERT with a pretrained mod

kenro515 1 Feb 08, 2022
ETM - R package for Topic Modelling in Embedding Spaces

ETM - R package for Topic Modelling in Embedding Spaces This repository contains an R package called topicmodels.etm which is an implementation of ETM

bnosac 37 Nov 06, 2022
Continuously update some NLP practice based on different tasks.

NLP_practice We will continuously update some NLP practice based on different tasks. prerequisites Software pytorch = 1.10 torchtext = 0.11.0 sklear

0 Jan 05, 2022
Understand Text Summarization and create your own summarizer in python

Automatic summarization is the process of shortening a text document with software, in order to create a summary with the major points of the original document. Technologies that can make a coherent

Sreekanth M 1 Oct 18, 2022
edge-SR: Super-Resolution For The Masses

edge-SR: Super Resolution For The Masses Citation Pablo Navarrete Michelini, Yunhua Lu and Xingqun Jiang. "edge-SR: Super-Resolution For The Masses",

Pablo 40 Nov 10, 2022
Linear programming solver for paper-reviewer matching and mind-matching

Paper-Reviewer Matcher A python package for paper-reviewer matching algorithm based on topic modeling and linear programming. The algorithm is impleme

Titipat Achakulvisut 66 Jul 05, 2022
PUA Programming Language written in Python.

pua-lang PUA Programming Language written in Python. Installation git clone https://github.com/zhaoyang97/pua-lang.git cd pua-lang pip install . Try

zy 4 Feb 19, 2022
QVHighlights: Detecting Moments and Highlights in Videos via Natural Language Queries

Moment-DETR QVHighlights: Detecting Moments and Highlights in Videos via Natural Language Queries Jie Lei, Tamara L. Berg, Mohit Bansal For dataset de

Jie Lei 雷杰 133 Dec 22, 2022
Large-scale pretraining for dialogue

A State-of-the-Art Large-scale Pretrained Response Generation Model (DialoGPT) This repository contains the source code and trained model for a large-

Microsoft 1.8k Jan 07, 2023
Speach Recognitions

easy_meeting Добро пожаловать в интерфейс сервиса автопротоколирования совещаний Easy Meeting. Website - http://cf5c-62-192-251-83.ngrok.io/ Принципиа

Maksim 3 Feb 18, 2022
Natural Language Processing for Adverse Drug Reaction (ADR) Detection

Natural Language Processing for Adverse Drug Reaction (ADR) Detection This repo contains code from a project to identify ADRs in discharge summaries a

Medicines Optimisation Service - Austin Health 21 Aug 05, 2022