Fake Shakespearean Text Generator

Overview

Fake Shakespearean Text Generator

This project contains an impelementation of stateful Char-RNN model to generate fake shakespearean texts.

Files and folders of the project.

models folder

This folder contains to zip file, one for stateful model and the other for stateless model (this model files are fully saved model architectures,not just weights).

weights.zip

As you its name implies, this zip file contains the model's weights as checkpoint format (see tensorflow model save formats).

tokenizer.save

This file is an saved and trained (sure on the dataset) instance of Tensorflow Tokenizer (used at inference time).

shakespeare.txt

This file is the dataset and composed of regular texts (see below what does it look like).

First Citizen:
Before we proceed any further, hear me speak.

All:
Speak, speak.

train.py

Contains codes for training.

inference.py

Contains codes for inference.

How to Train the Model

A more depth look into train.py file


First, it gets the dataset from the specified url (line 11). Then reads the dataset to train the tokenizer object just mentioned above and trains the tokenizer (line 18). After training, encodes the dataset (line 24). Since this is a stateful model, all sequences in batch should be start where the sequences at the same index number in the previous batch left off. Let's say a batch composes of 32 sequences. The 33th sequence (i.e. the first sequence in the second batch) should exactly start where the 1st sequence (i.e. first sequence in the first batch) ended up. The second sequence in the 2nd batch should start where 2nd sequnce in first batch ended up and so on. Codes between line 28 and line 48 do this and result the dataset. Codes between line 53 and line 57 create the stateful model. Note that to be able to adjust recurrent_dropout hyperparameter you have to train the model on a GPU. After creation of model, a callback to reset states at the beginning of each epoch is created. Then the training start with the calling fit method and then model (see tensorflow' entire model save), model's weights and the tokenizer is saved.

Usage of the Model

Where the magic happens (inference.py file)


To be able use the model, it should first converted to a stateless model due to a stateful model expects a batch of inputs instead of just an input. To do this a stateless model with the same architecture of stateful model should be created. Codes between line 44 and line 49 do this. To load weights the model should be builded. After building weight are loaded to the stateless model. This model uses predicted character at time step t as an inputs at time t + 1 to predict character at t + 2 and this operation keep goes until the prediction of last character (in this case it 100 but you can change it whatever you want. Note that the longer sequences end up with more inaccurate results). To predict the next characters, first the provided initial character should be tokenized. preprocess function does this. To prevent repeated characters to be shown in the generated text, the next character should be selected from candidate characters randomly. The next_char function does this. The randomness can be controlled with temperature parameter (to learn usage of it check the comment at line 30). The complete_text function, takes a character as an argument, predicts the next character via next_char function and concatenates the predicted character to the text. It repeats the process until to reach n_chars. Last, the stateless model will be saved also.

Results

Effects of the magic


print(complete_text("a"))

arpet:
like revenge borning and vinged him not.

lady good:
then to know to creat it; his best,--lord


print(complete_text("k"))

ken countents.
we are for free!

first man:
his honour'd in the days ere in any since
and all this ma


print(complete_text("f"))

ford:
hold! we must percy and he was were good.

gabes:
by fair lord, my courters,
sir.

nurse:
well


print(complete_text("h"))

holdred?
what she pass myself in some a queen
and fair little heartom in this trumpet our hands?
the

Owner
Recep YILDIRIM
Software Imagineering
Recep YILDIRIM
Dope Wars game engine on StarkNet L2 roll-up

RYO Dope Wars game engine on StarkNet L2 roll-up. What TI-83 drug wars built as smart contract system. Background mechanism design notion here. Initia

104 Dec 04, 2022
List of GSoC organisations with number of times they have been selected.

Welcome to GSoC Organisation Frequency And Details 👋 List of GSoC organisations with number of times they have been selected, techonologies, topics,

Shivam Kumar Jha 41 Oct 01, 2022
jel - Japanese Entity Linker - is Bi-encoder based entity linker for japanese.

jel: Japanese Entity Linker jel - Japanese Entity Linker - is Bi-encoder based entity linker for japanese. Usage Currently, link and question methods

izuna385 10 Jan 06, 2023
A versatile token stream for handwritten parsers.

Writing recursive-descent parsers by hand can be quite elegant but it's often a bit more verbose than expected, especially when it comes to handling indentation and reporting proper syntax errors. Th

Valentin Berlier 8 Nov 30, 2022
SEJE is a prototype for the paper Learning Text-Image Joint Embedding for Efficient Cross-Modal Retrieval with Deep Feature Engineering.

SEJE is a prototype for the paper Learning Text-Image Joint Embedding for Efficient Cross-Modal Retrieval with Deep Feature Engineering. Contents Inst

0 Oct 21, 2021
This Project is based on NLTK It generates a RANDOM WORD from a predefined list of words, From that random word it read out the word, its meaning with parts of speech , its antonyms, its synonyms

This Project is based on NLTK(Natural Language Toolkit) It generates a RANDOM WORD from a predefined list of words, From that random word it read out the word, its meaning with parts of speech , its

SaiVenkatDhulipudi 2 Nov 17, 2021
This repository contains data used in the NAACL 2021 Paper - Proteno: Text Normalization with Limited Data for Fast Deployment in Text to Speech Systems

Proteno This is the data release associated with the corresponding NAACL 2021 Paper - Proteno: Text Normalization with Limited Data for Fast Deploymen

37 Dec 04, 2022
Biterm Topic Model (BTM): modeling topics in short texts

Biterm Topic Model Bitermplus implements Biterm topic model for short texts introduced by Xiaohui Yan, Jiafeng Guo, Yanyan Lan, and Xueqi Cheng. Actua

Maksim Terpilowski 49 Dec 30, 2022
Search-Engine - 📖 AI based search engine

Search Engine AI based search engine that was trained on 25000 samples, feel free to train on up to 1.2M sample from kaggle dataset, link below StackS

Vladislav Kruglikov 2 Nov 29, 2022
Reformer, the efficient Transformer, in Pytorch

Reformer, the Efficient Transformer, in Pytorch This is a Pytorch implementation of Reformer https://openreview.net/pdf?id=rkgNKkHtvB It includes LSH

Phil Wang 1.8k Dec 30, 2022
KakaoBrain KoGPT (Korean Generative Pre-trained Transformer)

KoGPT KoGPT (Korean Generative Pre-trained Transformer) https://github.com/kakaobrain/kogpt https://huggingface.co/kakaobrain/kogpt Model Descriptions

Kakao Brain 797 Dec 26, 2022
This repository contains the code, data, and models of the paper titled "CrossSum: Beyond English-Centric Cross-Lingual Abstractive Text Summarization for 1500+ Language Pairs".

CrossSum This repository contains the code, data, and models of the paper titled "CrossSum: Beyond English-Centric Cross-Lingual Abstractive Text Summ

BUET CSE NLP Group 29 Nov 19, 2022
Reproduction process of BERT on SST2 dataset

BERT-SST2-Prod Reproduction process of BERT on SST2 dataset 安装说明 下载代码库 git clone https://github.com/JunnYu/BERT-SST2-Prod 进入文件夹,安装requirements pip ins

yujun 1 Nov 18, 2021
ChainKnowledgeGraph, 产业链知识图谱包括A股上市公司、行业和产品共3类实体

ChainKnowledgeGraph, 产业链知识图谱包括A股上市公司、行业和产品共3类实体,包括上市公司所属行业关系、行业上级关系、产品上游原材料关系、产品下游产品关系、公司主营产品、产品小类共6大类。 上市公司4,654家,行业511个,产品95,559条、上游材料56,824条,上级行业480条,下游产品390条,产品小类52,937条,所属行业3,946条。

liuhuanyong 415 Jan 06, 2023
Indonesia spellchecker with python

indonesia-spellchecker Ganti kata yang terdapat pada file teks.txt untuk diperiksa kebenaran kata. Run on local machine python3 main.py

Rahmat Agung Julians 1 Sep 14, 2022
The PyTorch based implementation of continuous integrate-and-fire (CIF) module.

CIF-PyTorch This is a PyTorch based implementation of continuous integrate-and-fire (CIF) module for end-to-end (E2E) automatic speech recognition (AS

Minglun Han 24 Dec 29, 2022
DLO8012: Natural Language Processing & CSL804: Computational Lab - II

NATURAL-LANGUAGE-PROCESSING-AND-COMPUTATIONAL-LAB-II DLO8012: NLP & CSL804: CL-II [SEMESTER VIII] Syllabus NLP - Reference Books THE WALL MEGA SATISH

AMEY THAKUR 7 Apr 28, 2022
Tools for curating biomedical training data for large-scale language modeling

Tools for curating biomedical training data for large-scale language modeling

BigScience Workshop 242 Dec 25, 2022
BARTpho: Pre-trained Sequence-to-Sequence Models for Vietnamese

Table of contents Introduction Using BARTpho with fairseq Using BARTpho with transformers Notes BARTpho: Pre-trained Sequence-to-Sequence Models for V

VinAI Research 58 Dec 23, 2022
CrossNER: Evaluating Cross-Domain Named Entity Recognition (AAAI-2021)

CrossNER is a fully-labeled collected of named entity recognition (NER) data spanning over five diverse domains (Politics, Natural Science, Music, Literature, and Artificial Intelligence) with specia

Zihan Liu 89 Nov 10, 2022