Official implementation of the ICLR 2021 paper

Overview

You Only Need Adversarial Supervision for Semantic Image Synthesis

Official PyTorch implementation of the ICLR 2021 paper "You Only Need Adversarial Supervision for Semantic Image Synthesis". The code allows the users to reproduce and extend the results reported in the study. Please cite the paper when reporting, reproducing or extending the results.

[OpenReview] [Arxiv]

Overview

This repository implements the OASIS model, which generates realistic looking images from semantic label maps. In addition, many different images can be generated from any given label map by simply resampling a noise vector (first two rows of the figure below). The model also allows to just resample parts of the image (see the last two rows of the figure below). Check out the paper for details, as well as the appendix, which contains many additional examples.

Setup

First, clone this repository:

git clone https://github.com/boschresearch/OASIS.git
cd OASIS

The code is tested for Python 3.7.6 and the packages listed in oasis.yml. The basic requirements are PyTorch and Torchvision. The easiest way to get going is to install the oasis conda environment via

conda env create --file oasis.yml
source activate oasis

Datasets

For COCO-Stuff, Cityscapes or ADE20K, please follow the instructions for the dataset preparation as outlined in https://github.com/NVlabs/SPADE.

Training the model

To train the model, execute the training scripts in the scripts folder. In these scripts you first need to specify the path to the data folder. Via the --name parameter the experiment can be given a unique identifier. The experimental results are then saved in the folder ./checkpoints, where a new folder for each run is created with the specified experiment name. You can also specify another folder for the checkpoints using the --checkpoints_dir parameter. If you want to continue training, start the respective script with the --continue_train flag. Have a look at config.py for other options you can specify.
Training on 4 NVIDIA Tesla V100 (32GB) is recommended.

Testing the model

To test a trained model, execute the testing scripts in the scripts folder. The --name parameter should correspond to the experiment name that you want to test, and the --checkpoints_dir should the folder where the experiment is saved (default: ./checkpoints). These scripts will generate images from a pretrained model in ./results/name/.

Measuring FID

The FID is computed on the fly during training, using the popular PyTorch FID implementation from https://github.com/mseitzer/pytorch-fid. At the beginning of training, the inception moments of the real images are computed before the actual training loop starts. How frequently the FID should be evaluated is controlled via the parameter --freq_fid, which is set to 5000 steps by default. The inception net that is used for FID computation automatically downloads a pre-trained inception net checkpoint. If that automatic download fails, for instance because your server has restricted internet access, get the checkpoint named pt_inception-2015-12-05-6726825d.pth from here and place it in /utils/fid_folder/. In this case, do not forget to replace load_state_dict_from_url function accordingly.

Pretrained models

The checkpoints for the pre-trained models are available here as zip files. Copy them into the checkpoints folder (the default is ./checkpoints, create it if it doesn't yet exist) and unzip them. The folder structure should be

checkpoints_dir
├── oasis_ade20k_pretrained                   
├── oasis_cityscapes_pretrained  
└── oasis_coco_pretrained

You can generate images with a pre-trained checkpoint via test.py. Using the example of ADE20K:

python test.py --dataset_mode ade20k --name oasis_ade20k_pretrained \
--dataroot path_to/ADEChallenge2016

This script will create a folder named ./results in which the resulting images are saved.

If you want to continue training from this checkpoint, use train.py with the same --name parameter and add --continue_train --which_iter best.

Citation

If you use this work please cite

@inproceedings{schonfeld_sushko_iclr2021,
  title={You Only Need Adversarial Supervision for Semantic Image Synthesis},
  author={Sch{\"o}nfeld, Edgar and Sushko, Vadim and Zhang, Dan and Gall, Juergen and Schiele, Bernt and Khoreva, Anna},
  booktitle={International Conference on Learning Representations},
  year={2021}
}   

License

This project is open-sourced under the AGPL-3.0 license. See the LICENSE file for details.

For a list of other open source components included in this project, see the file 3rd-party-licenses.txt.

Purpose of the project

This software is a research prototype, solely developed for and published as part of the publication cited above. It will neither be maintained nor monitored in any way.

Contact

Please feel free to open an issue or contact us personally if you have questions, need help, or need explanations. Write to one of the following email addresses, and maybe put one other in the cc:

[email protected]
[email protected]
[email protected]
[email protected]

Owner
Bosch Research
Bosch Research
Brain tumor detection using CNN (InceptionResNetV2 Model)

Brain-Tumor-Detection Building a detection model using a convolutional neural network in Tensorflow & Keras. Used brain MRI images. InceptionResNetV2

1 Feb 13, 2022
Source code for our paper "Learning to Break Deep Perceptual Hashing: The Use Case NeuralHash"

Learning to Break Deep Perceptual Hashing: The Use Case NeuralHash Abstract: Apple recently revealed its deep perceptual hashing system NeuralHash to

<a href=[email protected]"> 11 Dec 03, 2022
Official code for ICCV2021 paper "M3D-VTON: A Monocular-to-3D Virtual Try-on Network"

M3D-VTON: A Monocular-to-3D Virtual Try-On Network Official code for ICCV2021 paper "M3D-VTON: A Monocular-to-3D Virtual Try-on Network" Paper | Suppl

109 Dec 29, 2022
ICON: Implicit Clothed humans Obtained from Normals (CVPR 2022)

ICON: Implicit Clothed humans Obtained from Normals Yuliang Xiu · Jinlong Yang · Dimitrios Tzionas · Michael J. Black CVPR 2022 News 🚩 [2022/04/26] H

Yuliang Xiu 1.1k Jan 04, 2023
Deep learning models for classification of 15 common weeds in the southern U.S. cotton production systems.

CottonWeeds Deep learning models for classification of 15 common weeds in the southern U.S. cotton production systems. requirements pytorch torchsumma

Dong Chen 8 Jun 07, 2022
Bayesian optimization in PyTorch

BoTorch is a library for Bayesian Optimization built on PyTorch. BoTorch is currently in beta and under active development! Why BoTorch ? BoTorch Prov

2.5k Dec 31, 2022
Multi-label Co-regularization for Semi-supervised Facial Action Unit Recognition (NeurIPS 2019)

MLCR This is the source code for paper Multi-label Co-regularization for Semi-supervised Facial Action Unit Recognition. Xuesong Niu, Hu Han, Shiguang

Edson-Niu 60 Nov 29, 2022
Multivariate Time Series Forecasting with efficient Transformers. Code for the paper "Long-Range Transformers for Dynamic Spatiotemporal Forecasting."

Spacetimeformer Multivariate Forecasting This repository contains the code for the paper, "Long-Range Transformers for Dynamic Spatiotemporal Forecast

QData 440 Jan 02, 2023
Implementation of the final project of the course DDA6309 Probabilistic Graphical Model

Task-aware Joint CWS and POS (TCwsPos) This is the implementation of the final project of the course DDA6309 Probabilistic Graphical Models, The Chine

Peng 1 Dec 26, 2021
The Incredible PyTorch: a curated list of tutorials, papers, projects, communities and more relating to PyTorch.

This is a curated list of tutorials, projects, libraries, videos, papers, books and anything related to the incredible PyTorch. Feel free to make a pu

Ritchie Ng 9.2k Jan 02, 2023
Discord bot for notifying on github events

Git-Observer Discord bot for notifying on github events ⚠️ This bot is meant to write messages to only one channel (implementing this for multiple pro

ilu_vatar_ 0 Apr 19, 2022
Code for the paper Language as a Cognitive Tool to Imagine Goals in Curiosity Driven Exploration

IMAGINE: Language as a Cognitive Tool to Imagine Goals in Curiosity Driven Exploration This repo contains the code base of the paper Language as a Cog

Flowers Team 26 Dec 22, 2022
Unofficial Implement PU-Transformer

PU-Transformer-pytorch Pytorch unofficial implementation of PU-Transformer (PU-Transformer: Point Cloud Upsampling Transformer) https://arxiv.org/abs/

Lee Hyung Jun 7 Sep 21, 2022
FasterAI: A library to make smaller and faster models with FastAI.

Fasterai fasterai is a library created to make neural network smaller and faster. It essentially relies on common compression techniques for networks

Nathan Hubens 193 Jan 01, 2023
PyTorch implementation of Off-policy Learning in Two-stage Recommender Systems

Off-Policy-2-Stage This repo provides a PyTorch implementation of the MovieLens experiments for the following paper: Off-policy Learning in Two-stage

Jiaqi Ma 25 Dec 12, 2022
Image based Human Fall Detection

Here I integrated the YOLOv5 object detection algorithm with my own created dataset which consists of human activity images to achieve low cost, high accuracy, and real-time computing requirements

UTTEJ KUMAR 12 Dec 11, 2022
The FIRST GANs-based omics-to-omics translation framework

OmiTrans Please also have a look at our multi-omics multi-task DL freamwork 👀 : OmiEmbed The FIRST GANs-based omics-to-omics translation framework Xi

Xiaoyu Zhang 6 Dec 14, 2022
PESTO: Switching Point based Dynamic and Relative Positional Encoding for Code-Mixed Languages

PESTO: Switching Point based Dynamic and Relative Positional Encoding for Code-Mixed Languages Abstract NLP applications for code-mixed (CM) or mix-li

Mohsin Ali, Mohammed 1 Nov 12, 2021
Organseg dags - The repository contains the codebase for multi-organ segmentation with directed acyclic graphs (DAGs) in CT.

Organseg dags - The repository contains the codebase for multi-organ segmentation with directed acyclic graphs (DAGs) in CT.

yzf 1 Jun 12, 2022
Multiple Object Extraction from Aerial Imagery with Convolutional Neural Networks

This is an implementation of Volodymyr Mnih's dissertation methods on his Massachusetts road & building dataset and my original methods that are publi

Shunta Saito 255 Sep 07, 2022