AVD Quickstart Containerlab

Overview

AVD Quickstart Containerlab

WARNING This repository is still under construction. It's fully functional, but has number of limitations. For example:

  • README is still work-in-progress
  • Lab configuration and adresses are hardcoded and have to be redefined in many different files if you setup is different. That will be simplified before the final release.
  • Some workflow and code optimization required.

Overview

This repository helps to build your own AVD test lab based on Containerlab in minutes. The main target is to provide an easy way to build the environment to learn and test AVD automation. The lab can be used together with CVP VM, but it's not mandatory.

WARNING: if CVP VM is part of the lab, make sure that it's reachable and credentials configured on CVP are matching the lab.

Release Notes:

  • 0.1
    • initial release with many shortcuts
  • 0.2
    • Fix bugs.
    • Improve lab topology.
    • Improve lab workflow.
    • Add EVPN AA scenario.

Lab Prerequisites

The lab requires a single Linux host (Ubuntu server recommended) with Docker and Containerlab installed. It's possible to run Containerlab on MacOS, but that was not tested. Dedicated Linux machine is currently the preferred option.

To test AVD with CVP, KVM can be installed on the same host. To install KVM, check this guide or any other resource available on internet. Once KVM is installed, you can use one of the following repositories to install CVP:

It is definitely possible to run CVP on a dedicated host and a different hypervisor as long as it can be reached by cLab devices.

NOTE: to use CVP VM with container lab it's not required to recompile Linux core. That's only required if you plan to use vEOS on KVM for you lab setup.

The lab setup diagram:

lab diagram

How To Use The Lab

  1. Clone this repository to your lab host: git clone https://github.com/arista-netdevops-community/avd-quickstart-containerlab.git
  2. It is recommended to remove git remote as changes are not supposed to be pushed to the origin: git remote remove origin
  3. Change to the lab directory: cd avd-quickstart-containerlab
  4. Before running the lab it is recommended to create a dedicated git branch for you lab experiments to keep original branch clean.
  5. Check makefile help for the list of commands available: make help
[email protected]:~/avd-quickstart-containerlab$ make help
avd_build_cvp                  build configs and configure switches via eAPI
avd_build_eapi                 build configs and configure switches via eAPI
build                          Build docker image
clab_deploy                    Deploy ceos lab
clab_destroy                   Destroy ceos lab
clab_graph                     Build lab graph
help                           Display help message
inventory_evpn_aa              onboard devices to CVP
inventory_evpn_mlag            onboard devices to CVP
onboard                        onboard devices to CVP
rm                             Remove all containerlab directories
run                            run docker image. This requires cLab "custom_mgmt" to be present
  1. If you don't have cEOS image on your host yet, download it from arista.com and import. Make sure that image name is matching the parameters defined in CSVs_EVPN_AA/clab.yml or CSVs_EVPN_MLAG/clab.yml
  2. Use make build to build avd-quickstart:latest container image. If that was done earlier and the image already exists, you can skip this step.
  3. Run make inventory_evpn_aa or make inventory_evpn_mlag to build the inventory for EVPN AA or MLAG scenario. Ideally AVD inventroy must be a different repository, but for simplicity script will generate inventory in the current directory.
  4. Review the inventory generated by avd-quickstart. You can optionally git commit the changes.
  5. Run make clab_deploy to build the containerlab. Wait until the deployment will finish.
  6. Execute make run to run avd-quickstart container.
  7. If CVP VM is used in the lab, onboard cLab switches with make onboard. Once the script behind this shortcut wil finish, devices will appear in the CVP inventory.
  8. To execute Ansible AVD playbook, use make avd_build_eapi or make avd_build_cvp shortcuts. That will execute playbook/fabric-deploy-eapi.yml or playbook/fabric-deploy-cvp.yml.
  9. Run make avd_validate to execute AVD state validation playbook playbooks/validate-states.yml.
  10. Run make avd_snapshot if you want to collect a network snapshot with playbooks/snapshot.yml.
  11. Connect to hosts and switches and run some pings, show commands, etc. To connect to a lab device, you can type it's hostname in the container:

connect to a device from the container

NOTE: device hostnames are currently hardcoded inside the avd-quickstart container. If you have customized the inventory, ssh to the device manually. That will be improved in the coming versions.

You can optionally git commit the changes and start playing with the lab. Use CSVs to add some VLANs, etc. for example. Re-generate the inventory and check how the AVD repository data changes.

How To Destroy The Lab

  1. Exit the avd-quickstart container by typing exit
  2. Execute make clab_destroy to destroy the containerlab.
  3. Execute make rm to delete the generated AVD inventory.
Owner
Carl Buchmann
Systems Engineer @ Arista Networks Passionate about designing networks and automating them!
Carl Buchmann
The code for "Deep Level Set for Box-supervised Instance Segmentation in Aerial Images".

Deep Levelset for Box-supervised Instance Segmentation in Aerial Images Wentong Li, Yijie Chen, Wenyu Liu, Jianke Zhu* Any questions or discussions ar

sunshine.lwt 112 Jan 05, 2023
Code for "Sparse Steerable Convolutions: An Efficient Learning of SE(3)-Equivariant Features for Estimation and Tracking of Object Poses in 3D Space"

Sparse Steerable Convolution (SS-Conv) Code for "Sparse Steerable Convolutions: An Efficient Learning of SE(3)-Equivariant Features for Estimation and

25 Dec 21, 2022
A practical ML pipeline for data labeling with experiment tracking using DVC.

Auto Label Pipeline A practical ML pipeline for data labeling with experiment tracking using DVC Goals: Demonstrate reproducible ML Use DVC to build a

Todd Cook 4 Mar 08, 2022
Semi-supervised Learning for Sentiment Analysis

Neural-Semi-supervised-Learning-for-Text-Classification-Under-Large-Scale-Pretraining Code, models and Datasets for《Neural Semi-supervised Learning fo

47 Jan 01, 2023
Framework for Spectral Clustering on the Sparse Coefficients of Learned Dictionaries

Dictionary Learning for Clustering on Hyperspectral Images Overview Framework for Spectral Clustering on the Sparse Coefficients of Learned Dictionari

Joshua Bruton 6 Oct 25, 2022
Human motion synthesis using Unity3D

Human motion synthesis using Unity3D Prerequisite: Software: amc2bvh.exe, Unity 2017, Blender. Unity: RockVR (Video Capture), scenes, character models

Hao Xu 9 Jun 01, 2022
A Pytorch implementation of "Manifold Matching via Deep Metric Learning for Generative Modeling" (ICCV 2021)

Manifold Matching via Deep Metric Learning for Generative Modeling A Pytorch implementation of "Manifold Matching via Deep Metric Learning for Generat

69 Dec 10, 2022
Convert onnx models to pytorch.

onnx2torch onnx2torch is an ONNX to PyTorch converter. Our converter: Is easy to use – Convert the ONNX model with the function call convert; Is easy

ENOT 264 Dec 30, 2022
Acoustic mosquito detection code with Bayesian Neural Networks

HumBugDB Acoustic mosquito detection with Bayesian Neural Networks. Extract audio or features from our large-scale dataset on Zenodo. This repository

31 Nov 28, 2022
2021 National Underwater Robotics Vision Optics

2021-National-Underwater-Robotics-Vision-Optics 2021年全国水下机器人算法大赛-光学赛道-B榜精度第18名 (Kilian_Di的团队:A榜[email pro

Di Chang 9 Nov 04, 2022
Code of Adverse Weather Image Translation with Asymmetric and Uncertainty aware GAN

Adverse Weather Image Translation with Asymmetric and Uncertainty-aware GAN (AU-GAN) Official Tensorflow implementation of Adverse Weather Image Trans

Jeong-gi Kwak 36 Dec 26, 2022
The lightweight PyTorch wrapper for high-performance AI research. Scale your models, not the boilerplate.

The lightweight PyTorch wrapper for high-performance AI research. Scale your models, not the boilerplate. Website • Key Features • How To Use • Docs •

Pytorch Lightning 21.1k Jan 01, 2023
Código de um painel de auto atendimento feito em Python.

Painel de Auto-Atendimento O intuito desse projeto era fazer em Python um programa que simulasse um painel de auto atendimento, no maior estilo Mac Do

Calebe Alves Evangelista 2 Nov 09, 2022
Buffon’s needle: one of the oldest problems in geometric probability

Buffon-s-Needle Buffon’s needle is one of the oldest problems in geometric proba

3 Feb 18, 2022
SE3 Pose Interp - Interpolate camera pose or trajectory in SE3, pose interpolation, trajectory interpolation

SE3 Pose Interpolation Pose estimated from SLAM system are always discrete, and

Ran Cheng 4 Dec 15, 2022
Pytorch Implementation for (STANet+ and STANet)

Pytorch Implementation for (STANet+ and STANet) V2-Weakly Supervised Visual-Auditory Saliency Detection with Multigranularity Perception (arxiv), pdf:

GuotaoWang 14 Nov 29, 2022
Data and Code for paper Outlining and Filling: Hierarchical Query Graph Generation for Answering Complex Questions over Knowledge Graph is available for research purposes.

Data and Code for paper Outlining and Filling: Hierarchical Query Graph Generation for Answering Complex Questions over Knowledge Graph is available f

Yongrui Chen 5 Nov 10, 2022
Towards Representation Learning for Atmospheric Dynamics (AtmoDist)

Towards Representation Learning for Atmospheric Dynamics (AtmoDist) The prediction of future climate scenarios under anthropogenic forcing is critical

Sebastian Hoffmann 4 Dec 15, 2022
Code for Generating Disentangled Arguments with Prompts: A Simple Event Extraction Framework that Works

GDAP Code for Generating Disentangled Arguments with Prompts: A Simple Event Extraction Framework that Works Environment Python (verified: v3.8) CUDA

45 Oct 29, 2022
Research Artifact of USENIX Security 2022 Paper: Automated Side Channel Analysis of Media Software with Manifold Learning

Automated Side Channel Analysis of Media Software with Manifold Learning Official implementation of USENIX Security 2022 paper: Automated Side Channel

Yuanyuan Yuan 175 Jan 07, 2023