Final report with code for KAIST Course KSE 801.

Overview

🧮 KSE 801 Final Report with Code

This is the final report with code for KAIST course KSE 801.

Author: Chuanbo Hua, Federico Berto.

💡 Introduction About the OSC

Orthogonal collocation is a method for the numerical solution of partial differential equations. It uses collocation at the zeros of some orthogonal polynomials to transform the partial differential equation (PDE) to a set of ordinary differential equations (ODEs). The ODEs can then be solved by any method. It has been shown that it is usually advantageous to choose the collocation points as the zeros of the corresponding Jacobi polynomial (independent of the PDE system) [1].

Orthogonal collocation method was famous at 1970s, mainly developed by BA Finlayson [2]. Which is a powerful collocation tool in solving partial differential equations and ordinary differential equations.

Orthogonal collocation method works for more than one variable, but here we only choose one variable cases, since this is more simple to understand and most widely used.

💡 Introduction About the GNN

You can find more details from the jupter notebook within gnn-notebook folder. We include the dataset init, model training and test in the folder.

Reminder: for dataset, we provide another repository for dataset generator. Please refer to repo: https://github.com/DiffEqML/pde-dataset-generator.

🏷 Features

  • Turoritals. We provide several examples, including linear and nonlinear problems to help you to understand how to use it and the performance of this model.
  • Algorithm Explanation. We provide a document to in detail explain how this alogirthm works by example, which we think it's easier to get. For more detail, please refer to Algorithm section.

⚙️ Requirement

Python Version: 3.6 or later
Python Package: numpy, matplotlib, jupyter-notebook/jupyter-lab, dgl, torch

🔧 Structure

  • src: source code for OSC algorithm.
  • fig: algorithm output figures for readme
  • osc-notebook: tutorial jupyter notebooks about our osc method
  • gnn-notebook: tutorial jupyter notebooks about graph neural network
  • script: some training and tesing script of the graph neural network

🔦 How to use

Step 1. Download or Clone this repository.

Step 2. Refer to osc-notebook/example.ipynb, it will introduce how to use this model in detail by examples. Main process would be

  1. collocation1d(): generate collocation points.
  2. generator1d(): generate algebra equations from PDEs to be solved.
  3. numpy.linalg.solve(): solve the algebra equations to get polynomial result,
  4. polynomial1d(): generate simulation value to check the loss.

Step 3. Refer to notebooks under gnn-notebook to get the idea of training graph model.

📈 Examples

One variable, linear, 3 order Loss: <1e-4

One variable, linear, 4 order Loss: 2.2586

One variable, nonlinear Loss: 0.0447

2D PDEs Simulation

Dam Breaking Simulation

📜 Algorithm

Here we are going to simply introduce how 1D OSC works by example. Original pdf please refer to Introduction.pdf in this repository.

📚 References

[1] Orthogonal collocation. (2018, January 30). In Wikipedia. https://en.wikipedia.org/wiki/Orthogonal_collocation.

[2] Carey, G. F., and Bruce A. Finlayson. "Orthogonal collocation on finite elements." Chemical Engineering Science 30.5-6 (1975): 587-596.

Owner
Chuanbo HUA
HIT, POSTECH, KAIST.
Chuanbo HUA
A fast MoE impl for PyTorch

An easy-to-use and efficient system to support the Mixture of Experts (MoE) model for PyTorch.

Rick Ho 873 Jan 09, 2023
Yolov3 pytorch implementation

YOLOV3 Pytorch实现 在bubbliiing大佬代码的基础上进行了修改,添加了部分注释。 预训练模型 预训练模型来源于bubbliiing。 链接:https://pan.baidu.com/s/1ncREw6Na9ycZptdxiVMApw 提取码:appk 训练自己的数据集 按照VO

4 Aug 27, 2022
Paper: De-rendering Stylized Texts

Paper: De-rendering Stylized Texts Wataru Shimoda1, Daichi Haraguchi2, Seiichi Uchida2, Kota Yamaguchi1 1CyberAgent.Inc, 2 Kyushu University Accepted

CyberAgent AI Lab 55 Dec 18, 2022
Official code for the paper: Deep Graph Matching under Quadratic Constraint (CVPR 2021)

QC-DGM This is the official PyTorch implementation and models for our CVPR 2021 paper: Deep Graph Matching under Quadratic Constraint. It also contain

Quankai Gao 55 Nov 14, 2022
SporeAgent: Reinforced Scene-level Plausibility for Object Pose Refinement

SporeAgent: Reinforced Scene-level Plausibility for Object Pose Refinement This repository implements the approach described in SporeAgent: Reinforced

Dominik Bauer 5 Jan 02, 2023
This a classic fintech problem that introduces real life difficulties such as data imbalance. Check out the notebook to find out more!

Credit Card Fraud Detection Introduction Online transactions have become a crucial part of any business over the years. Many of those transactions use

Jonathan Hasbani 0 Jan 20, 2022
OpenVINO黑客松比赛项目

Window_Guard OpenVINO黑客松比赛项目 英文名称:Window_Guard 中文名称:窗口卫士 硬件 树莓派4B 8G版本 一个磁石开关 USB摄像头(MP4视频文件也可以) 软件(库) OpenVINO RPi 使用方法 本项目使用的OPenVINO是是2021.3版本,并使用了

Tango 6 Jul 04, 2021
A Low Complexity Speech Enhancement Framework for Full-Band Audio (48kHz) based on Deep Filtering.

DeepFilterNet A Low Complexity Speech Enhancement Framework for Full-Band Audio (48kHz) based on Deep Filtering. libDF contains Rust code used for dat

Hendrik Schröter 292 Dec 25, 2022
Official PyTorch implementation for "Low Precision Decentralized Distributed Training with Heterogenous Data"

Low Precision Decentralized Training with Heterogenous Data Official PyTorch implementation for "Low Precision Decentralized Distributed Training with

Aparna Aketi 0 Nov 23, 2021
Melanoma Skin Cancer Detection using Convolutional Neural Networks and Transfer Learning🕵🏻‍♂️

This is a Kaggle competition in which we have to identify if the given lesion image is malignant or not for Melanoma which is a type of skin cancer.

Vipul Shinde 1 Jan 27, 2022
Head and Neck Tumour Segmentation and Prediction of Patient Survival Project

Head-and-Neck-Tumour-Segmentation-and-Prediction-of-Patient-Survival Welcome to the Head and Neck Tumour Segmentation and Prediction of Patient Surviv

5 Oct 20, 2022
Demonstrates iterative FGSM on Apple's NeuralHash model.

apple-neuralhash-attack Demonstrates iterative FGSM on Apple's NeuralHash model. TL;DR: It is possible to apply noise to CSAM images and make them loo

Lim Swee Kiat 11 Jun 23, 2022
SEC'21: Sparse Bitmap Compression for Memory-Efficient Training onthe Edge

Training Deep Learning Models on The Edge Training on the Edge enables continuous learning from new data for deployed neural networks on memory-constr

Brown University Scale Lab 4 Nov 18, 2022
A deep learning network built with TensorFlow and Keras to classify gender and estimate age.

Convolutional Neural Network (CNN). This repository contains a source code of a deep learning network built with TensorFlow and Keras to classify gend

Pawel Dziemiach 1 Dec 19, 2021
Code for the paper "Query Embedding on Hyper-relational Knowledge Graphs"

Query Embedding on Hyper-Relational Knowledge Graphs This repository contains the code used for the experiments in the paper Query Embedding on Hyper-

DimitrisAlivas 19 Jul 26, 2022
Perspective: Julia for Biologists

Perspective: Julia for Biologists 1. Examples Speed: Example 1 - Single cell data and network inference Domain: Single cell data Methodology: Network

Elisabeth Roesch 55 Dec 02, 2022
Implementation of ICCV 2021 oral paper -- A Novel Self-Supervised Learning for Gaussian Mixture Model

SS-GMM Implementation of ICCV 2021 oral paper -- Self-Supervised Image Prior Learning with GMM from a Single Noisy Image with supplementary material R

HUST-The Tan Lab 4 Dec 05, 2022
SymPy-powered, Wolfram|Alpha-like answer engine totally in your browser, without backend computation

SymPy Beta SymPy Beta is a fork of SymPy Gamma. The purpose of this project is to run a SymPy-powered, Wolfram|Alpha-like answer engine totally in you

Liumeo 25 Dec 21, 2022
[CVPR 2016] Unsupervised Feature Learning by Image Inpainting using GANs

Context Encoders: Feature Learning by Inpainting CVPR 2016 [Project Website] [Imagenet Results] Sample results on held-out images: This is the trainin

Deepak Pathak 829 Dec 31, 2022
Official Implementation of "Designing an Encoder for StyleGAN Image Manipulation"

Designing an Encoder for StyleGAN Image Manipulation (SIGGRAPH 2021) Recently, there has been a surge of diverse methods for performing image editing

749 Jan 09, 2023