ContourletNet: A Generalized Rain Removal Architecture Using Multi-Direction Hierarchical Representation

Overview

ContourletNet: A Generalized Rain Removal Architecture Using Multi-Direction Hierarchical Representation
(Accepted by BMVC'21)

image

Abstract:

Images acquired from rainy scenes usually suffer from bad visibility which may damage the performance of computer vision applications. The rainy scenarios can be categorized into two classes: moderate rain and heavy rain scenes. Moderate rain scene mainly consists of rain streaks while heavy rain scene contains both rain streaks and the veiling effect (similar to haze). Although existing methods have achieved excellent performance on these two cases individually, it still lacks a general architecture to address both heavy rain and moderate rain scenarios effectively. In this paper, we construct a hierarchical multi-direction representation network by using the contourlet transform (CT) to address both moderate rain and heavy rain scenarios. The CT divides the image into the multi-direction subbands (MS) and the semantic subband (SS). First, the rain streak information is retrieved to the MS based on the multi-orientation property of the CT. Second, a hierarchical architecture is proposed to reconstruct the background information including damaged semantic information and the veiling effect in the SS. Last, the multi-level subband discriminator with the feedback error map is proposed. By this module, all subbands can be well optimized. This is the first architecture that can address both of the two scenarios effectively.

[Paper] [Supplementary Material]

You can also refer our previous works on other low-level vision applications!

Desnowing-[HDCWNet] (ICCV'21) and [JSTASR](ECCV'20)
Dehazing-[PMS-Net](CVPR'19) and [PMHLD](TIP'20)
Image Relighting-[MB-Net] (NTIRE'21 1st solution) and [S3Net] (NTIRE'21 3 rd solution)

Network Architecture

image

Experimental Results

Quantitative Evaluation

image image

Qualitative Evaluation

image image

Setup and environment

To generate the recovered result you need:

  1. Python 3
  2. CPU or NVIDIA GPU + CUDA CuDNN
  3. Pytorch 1.0+

For moderate rain (trained on Rain100H dataset)

$ python test_real.py --ckpt ckpt/r100h --real_dir input_img/moderate

For heavy rain (trained on Heavy Rain dataset)

$ python test_real.py --ckpt ckpt/heavyrain --real_dir input_img/heavy

Citations

Please cite this paper in your publications if it is helpful for your tasks:

Bibtex:

@inproceedings{chen2021contour,
  title={ContourletNet: A Generalized Rain Removal Architecture Using Multi-Direction Hierarchical Representation},
  author={Chen, Wei-Ting and Tsai, Cheng-Che and Fang, Hao-Yu and and Chen, I-Hsiang and Ding, Jian-Jiun and Kuo, Sy-Yen},
  booktitle={Proceedings of the British Machine Vision Conference},
  year={2021}
}
Multi-agent reinforcement learning algorithm and environment

Multi-agent reinforcement learning algorithm and environment [en/cn] Pytorch implements multi-agent reinforcement learning algorithms including IQL, Q

万鲲鹏 7 Sep 20, 2022
Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition

Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition

107 Dec 02, 2022
MISSFormer: An Effective Medical Image Segmentation Transformer

MISSFormer Code for paper "MISSFormer: An Effective Medical Image Segmentation Transformer". Please read our preprint at the following link: paper_add

Fong 22 Dec 24, 2022
Code for the paper "Reinforced Active Learning for Image Segmentation"

Reinforced Active Learning for Image Segmentation (RALIS) Code for the paper Reinforced Active Learning for Image Segmentation Dependencies python 3.6

Arantxa Casanova 79 Dec 19, 2022
Vision Transformer for 3D medical image registration (Pytorch).

ViT-V-Net: Vision Transformer for Volumetric Medical Image Registration keywords: vision transformer, convolutional neural networks, image registratio

Junyu Chen 192 Dec 20, 2022
Neural Nano-Optics for High-quality Thin Lens Imaging

Neural Nano-Optics for High-quality Thin Lens Imaging Project Page | Paper | Data Ethan Tseng, Shane Colburn, James Whitehead, Luocheng Huang, Seung-H

Ethan Tseng 39 Dec 05, 2022
PyTorch implementation of our CVPR2021 (oral) paper "Prototype Augmentation and Self-Supervision for Incremental Learning"

PASS - Official PyTorch Implementation [CVPR2021 Oral] Prototype Augmentation and Self-Supervision for Incremental Learning Fei Zhu, Xu-Yao Zhang, Chu

67 Dec 27, 2022
A trusty face recognition research platform developed by Tencent Youtu Lab

Introduction TFace: A trusty face recognition research platform developed by Tencent Youtu Lab. It provides a high-performance distributed training fr

Tencent 956 Jan 01, 2023
Jaxtorch (a jax nn library)

Jaxtorch (a jax nn library) This is my jax based nn library. I created this because I was annoyed by the complexity and 'magic'-ness of the popular ja

nshepperd 17 Dec 08, 2022
Synthetic Humans for Action Recognition, IJCV 2021

SURREACT: Synthetic Humans for Action Recognition from Unseen Viewpoints Gül Varol, Ivan Laptev and Cordelia Schmid, Andrew Zisserman, Synthetic Human

Gul Varol 59 Dec 14, 2022
Learning Pixel-level Semantic Affinity with Image-level Supervision for Weakly Supervised Semantic Segmentation, CVPR 2018

Learning Pixel-level Semantic Affinity with Image-level Supervision This code is deprecated. Please see https://github.com/jiwoon-ahn/irn instead. Int

Jiwoon Ahn 337 Dec 15, 2022
M3DSSD: Monocular 3D Single Stage Object Detector

M3DSSD: Monocular 3D Single Stage Object Detector Setup pytorch 0.4.1 Preparation Download the full KITTI detection dataset. Then place a softlink (or

mumianyuxin 64 Dec 27, 2022
Install alphafold on the local machine, get out of docker.

AlphaFold This package provides an implementation of the inference pipeline of AlphaFold v2.0. This is a completely new model that was entered in CASP

Kui Xu 73 Dec 13, 2022
Automatic Differentiation Multipole Moment Molecular Forcefield

Automatic Differentiation Multipole Moment Molecular Forcefield Performance notes On a single gpu, using waterbox_31ang.pdb example from MPIDplugin wh

4 Jan 07, 2022
Self-supervised Deep LiDAR Odometry for Robotic Applications

DeLORA: Self-supervised Deep LiDAR Odometry for Robotic Applications Overview Paper: link Video: link ICRA Presentation: link This is the correspondin

Robotic Systems Lab - Legged Robotics at ETH Zürich 181 Dec 29, 2022
A PyTorch Implementation of Single Shot Scale-invariant Face Detector.

S³FD: Single Shot Scale-invariant Face Detector A PyTorch Implementation of Single Shot Scale-invariant Face Detector. Eval python wider_eval_pytorch.

carwin 235 Jan 07, 2023
Efficient 6-DoF Grasp Generation in Cluttered Scenes

Contact-GraspNet Contact-GraspNet: Efficient 6-DoF Grasp Generation in Cluttered Scenes Martin Sundermeyer, Arsalan Mousavian, Rudolph Triebel, Dieter

NVIDIA Research Projects 148 Dec 28, 2022
Kaggle-titanic - A tutorial for Kaggle's Titanic: Machine Learning from Disaster competition. Demonstrates basic data munging, analysis, and visualization techniques. Shows examples of supervised machine learning techniques.

Kaggle-titanic This is a tutorial in an IPython Notebook for the Kaggle competition, Titanic Machine Learning From Disaster. The goal of this reposito

Andrew Conti 800 Dec 15, 2022
Heterogeneous Temporal Graph Neural Network

Heterogeneous Temporal Graph Neural Network This repository contains the datasets and source code of HTGNN. run_mag.ipynb is the training and testing

15 Dec 22, 2022
Libraries, tools and tasks created and used at DeepMind Robotics.

dm_robotics: Libraries, tools, and tasks created and used for Robotics research at DeepMind. Package overview Package Summary Transformations Rigid bo

DeepMind 273 Jan 06, 2023