Temporal Dynamic Convolutional Neural Network for Text-Independent Speaker Verification and Phonemetic Analysis

Overview

TDY-CNN for Text-Independent Speaker Verification

Official implementation of

  • Temporal Dynamic Convolutional Neural Network for Text-Independent Speaker Verification and Phonemetic Analysis
    by Seong-Hu Kim, Hyeonuk Nam, Yong-Hwa Park @ Human Lab, Mechanical Engineering Department, KAIST
    arXiv

Accepted paper in ICASSP 2022.

This code was written mainly with reference to VoxCeleb_trainer of paper 'In defence of metric learning for speaker recognition'.

Temporal Dynamic Convolutional Neural Network (TDY-CNN)

TDY-CNN efficiently applies adaptive convolution depending on time bins by changing the computation order as follows:

where x and y are input and output of TDY-CNN module which depends on frequency feature f and time feature t in time-frequency domain data. k-th basis kernel is convoluted with input and k-th bias is added. The results are aggregated using the attention weights which depends on time bins. K is the number of basis kernels, and σ is an activation function ReLU. The attention weight has a value between 0 and 1, and the sum of all basis kernels on a single time bin is 1 as the weights are processed by softmax.

Requirements and versions used

Python version of 3.7.10 is used with following libraries

  • pytorch == 1.8.1
  • pytorchaudio == 0.8.1
  • numpy == 1.19.2
  • scipy == 1.5.3
  • scikit-learn == 0.23.2

Dataset

We used VoxCeleb1 & 2 dataset in this paper. You can download the dataset by reffering to VoxCeleb1 and VoxCeleb1.

Training

You can train and save model in exps folder by running:

python trainSpeakerNet.py --model TDy_ResNet34_half --log_input True --encoder_type AVG --trainfunc softmaxproto --save_path exps/TDY_CNN_ResNet34 --nPerSpeaker 2 --batch_size 400

This implementation also provides accelerating training with distributed training and mixed precision training.

  • Use --distributed flag to enable distributed training and --mixedprec flag to enable mixed precision training.
    • GPU indices should be set before training : os.environ['CUDA_VISIBLE_DEVICES'] ='0,1,2,3' in trainSpeakernet.py.

Results:

Network #Parm EER (%) C_det (%)
TDY-VGG-M 71.2M 3.04 0.237
TDY-ResNet-34(×0.25) 13.3M 1.58 0.116
TDY-ResNet-34(×0.5) 51.9M 1.48 0.118

  • This result is low-dimensional t-SNE projection of frame-level speaker embed-dings of MHRM0 and FDAS1 using (a) baseline model ResNet-34(×0.25) and (b) TDY-ResNet-34(×0.25). Left column represents embeddings for different speakers, and right column represents em-beddings for different phoneme classes.

  • Embeddings by TDY-ResNet-34(×0.25) are closely gathered regardless of phoneme groups. It shows that the temporal dynamic model extracts consistent speaker information regardless of phonemes.

Pretrained models

There are pretrained models in folder pretrained_model.

For example, you can check 1.4786 of EER by running following script using TDY-ResNet-34(×0.5).

python trainSpeakerNet.py --eval --model TDy_ResNet34_half --log_input True --encoder_type AVG --trainfunc softmaxproto --save_path exps/test --eval_frames 400 --initial_model pretrained_model/pretrained_TDy_ResNet34_half.model

Citation

@article{kim2021tdycnn,
  title={Temporal Dynamic Convolutional Neural Network for Text-Independent Speaker Verification and Phonemetic Analysis},
  author={Kim, Seong-Hu and Nam, Hyeonuk and Park, Yong-Hwa},
  journal={arXiv preprint arXiv:2110.03213},
  year={2021}
}

Please contact Seong-Hu Kim at [email protected] for any query.

Owner
Seong-Hu Kim
Seong-Hu Kim
Framework web SnakeServer.

SnakeServer - Framework Web 🐍 Documentação oficial do framework SnakeServer. Conteúdo Sobre Como contribuir Enviar relatórios de segurança Pull reque

Jaedson Silva 0 Jul 21, 2022
PyTorch Autoencoders - Implementing a Variational Autoencoder (VAE) Series in Pytorch.

PyTorch Autoencoders Implementing a Variational Autoencoder (VAE) Series in Pytorch. Inspired by this repository Model List check model paper conferen

Subin An 8 Nov 21, 2022
Jittor implementation of Recursive-NeRF: An Efficient and Dynamically Growing NeRF

Recursive-NeRF: An Efficient and Dynamically Growing NeRF This is a Jittor implementation of Recursive-NeRF: An Efficient and Dynamically Growing NeRF

33 Nov 30, 2022
PyTorch Implementation of Daft-Exprt: Robust Prosody Transfer Across Speakers for Expressive Speech Synthesis

PyTorch Implementation of Daft-Exprt: Robust Prosody Transfer Across Speakers for Expressive Speech Synthesis

Ubisoft 76 Dec 30, 2022
PyTorch META-DATASET (Few-shot classification benchmark)

PyTorch META-DATASET (Few-shot classification benchmark) This repo contains a PyTorch implementation of meta-dataset and a unified implementation of s

Malik Boudiaf 39 Oct 31, 2022
CS583: Deep Learning

CS583: Deep Learning

Shusen Wang 2.6k Dec 30, 2022
[CVPR 2016] Unsupervised Feature Learning by Image Inpainting using GANs

Context Encoders: Feature Learning by Inpainting CVPR 2016 [Project Website] [Imagenet Results] Sample results on held-out images: This is the trainin

Deepak Pathak 829 Dec 31, 2022
Plotting points that lie on the intersection of the given curves using gradient descent.

Plotting intersection of curves using gradient descent Webapp Link --- What's the app about Why this app Plotting functions and their intersection. A

Divakar Verma 2 Jan 09, 2022
Awesome Remote Sensing Toolkit based on PaddlePaddle.

基于飞桨框架开发的高性能遥感图像处理开发套件,端到端地完成从训练到部署的全流程遥感深度学习应用。 最新动态 PaddleRS 即将发布alpha版本!欢迎大家试用 简介 PaddleRS是遥感科研院所、相关高校共同基于飞桨开发的遥感处理平台,支持遥感图像分类,目标检测,图像分割,以及变化检测等常用遥

146 Dec 11, 2022
Deep Learning for Time Series Forecasting.

nixtlats:Deep Learning for Time Series Forecasting [nikstla] (noun, nahuatl) Period of time. State-of-the-art time series forecasting for pytorch. Nix

Nixtla 5 Dec 06, 2022
Sync2Gen Code for ICCV 2021 paper: Scene Synthesis via Uncertainty-Driven Attribute Synchronization

Sync2Gen Code for ICCV 2021 paper: Scene Synthesis via Uncertainty-Driven Attribute Synchronization 0. Environment Environment: python 3.6 and cuda 10

Haitao Yang 62 Dec 30, 2022
Norm-based Analysis of Transformer

Norm-based Analysis of Transformer Implementations for 2 papers introducing to analyze Transformers using vector norms: Kobayashi+'20 Attention is Not

Goro Kobayashi 52 Dec 05, 2022
magiCARP: Contrastive Authoring+Reviewing Pretraining

magiCARP: Contrastive Authoring+Reviewing Pretraining Welcome to the magiCARP API, the test bed used by EleutherAI for performing text/text bi-encoder

EleutherAI 43 Dec 29, 2022
PyTorch implementation of DUL (Data Uncertainty Learning in Face Recognition, CVPR2020)

PyTorch implementation of DUL (Data Uncertainty Learning in Face Recognition, CVPR2020)

Mouxiao Huang 20 Nov 15, 2022
The final project of "Applying AI to 2D Medical Imaging Data" of "AI for Healthcare" nanodegree - Udacity.

Pneumonia Detection from X-Rays Project Overview In this project, you will apply the skills that you have acquired in this 2D medical imaging course t

Omar Laham 1 Jan 14, 2022
A simple implementation of Kalman filter in single object tracking

kalman-filter-in-single-object-tracking A simple implementation of Kalman filter in single object tracking https://www.bilibili.com/video/BV1Qf4y1J7D4

130 Dec 26, 2022
MoCoPnet - Deformable 3D Convolution for Video Super-Resolution

MoCoPnet: Exploring Local Motion and Contrast Priors for Infrared Small Target Super-Resolution Pytorch implementation of local motion and contrast pr

Xinyi Ying 28 Dec 15, 2022
[v1 (ISBI'21) + v2] MedMNIST: A Large-Scale Lightweight Benchmark for 2D and 3D Biomedical Image Classification

MedMNIST Project (Website) | Dataset (Zenodo) | Paper (arXiv) | MedMNIST v1 (ISBI'21) Jiancheng Yang, Rui Shi, Donglai Wei, Zequan Liu, Lin Zhao, Bili

683 Dec 28, 2022
Public repo for the ICCV2021-CVAMD paper "Is it Time to Replace CNNs with Transformers for Medical Images?"

Is it Time to Replace CNNs with Transformers for Medical Images? Accepted at ICCV-2021: Workshop on Computer Vision for Automated Medical Diagnosis (C

Christos Matsoukas 80 Dec 27, 2022
This repository consists of Blender python scripts and corresponding assets to generate variants of the CANDLE dataset

candle-simulator This repository consists of Blender python scripts and corresponding assets to generate variants of the IITH-CANDLE dataset. The rend

1 Dec 15, 2021