(CVPR 2021) Back-tracing Representative Points for Voting-based 3D Object Detection in Point Clouds

Related tags

Computer VisionBRNet
Overview

BRNet

fig_overview-c2

Introduction

This is a release of the code of our paper Back-tracing Representative Points for Voting-based 3D Object Detection in Point Clouds, CVPR 2021.

Authors: Bowen Cheng, Lu Sheng*, Shaoshuai Shi, Ming Yang, Dong Xu (*corresponding author)

[arxiv]

In this repository, we reimplement BRNet based on mmdetection3d for easier usage.

Citation

If you find our work useful in your research, please consider citing:

@inproceedings{cheng2021brnet,
  title={Back-tracing Representative Points for Voting-based 3D Object Detection in Point Clouds},
  author={Cheng, Bowen and Sheng, Lu and Shi, Shaoshuai and Yang, Ming and Xu, Dong},
  booktitle={Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition},
  year={2021}
}

Installation

This repo is built based on mmdetection3d (V0.11.0), please follow the getting_started.md for installation.

The code is tested under the following environment:

  • Ubuntu 16.04 LTS
  • Python 3.7.10
  • Pytorch 1.5.0
  • CUDA 10.1
  • GCC 7.3

Datasets

ScanNet

Please follow the instruction here to prepare ScanNet Data.

SUN RGB-D

Please follow the instruction here to prepare SUN RGB-D Data.

Download Trained Models

We provide the trained models of ScanNet and SUN RGB-D with per-class performances.

ScanNet V2 AP_0.25 AR_0.25 AP_0.50 AR_0.50
cabinet 0.4898 0.7634 0.2800 0.5349
bed 0.8849 0.9506 0.7915 0.8642
chair 0.9149 0.9357 0.8354 0.8604
sofa 0.9049 0.9794 0.8027 0.9278
table 0.6802 0.8486 0.6146 0.7600
door 0.5955 0.7430 0.3721 0.5418
window 0.4814 0.7092 0.2405 0.4078
bookshelf 0.5876 0.8701 0.5032 0.7532
picture 0.1716 0.3243 0.0687 0.1396
counter 0.6085 0.8846 0.3545 0.5385
desk 0.7538 0.9528 0.5481 0.7874
curtain 0.6275 0.7910 0.4126 0.5224
refrigerator 0.5467 0.9474 0.4882 0.8070
showercurtrain 0.7349 0.9643 0.5189 0.6786
toilet 0.9896 1.0000 0.9227 0.9310
sink 0.5901 0.6735 0.3521 0.4490
bathtub 0.8605 0.9355 0.8565 0.9032
garbagebin 0.4726 0.7151 0.3169 0.5170
Overall 0.6608 0.8327 0.5155 0.6624
SUN RGB-D AP_0.25 AR_0.25 AP_0.50 AR_0.50
bed 0.8633 0.9553 0.6544 0.7592
table 0.5136 0.8552 0.2981 0.5268
sofa 0.6754 0.8931 0.5830 0.7193
chair 0.7864 0.8723 0.6301 0.7137
toilet 0.8699 0.9793 0.7125 0.8345
desk 0.2929 0.8082 0.1134 0.4017
dresser 0.3237 0.7615 0.2058 0.4954
night_stand 0.5933 0.8627 0.4490 0.6588
bookshelf 0.3394 0.7199 0.1574 0.3652
bathtub 0.7505 0.8776 0.5383 0.6531
Overall 0.6008 0.8585 0.4342 0.6128

Note: Due to the detection results are unstable and fluctuate within 1~2 mAP points, the results here are slightly different from those in the paper.

Training

For ScanNet V2, please run:

CUDA_VISIBLE_DEVICES=0 python tools/train.py configs/brnet/brnet_8x1_scannet-3d-18class.py --seed 42

For SUN RGB-D, please run:

CUDA_VISIBLE_DEVICES=0 python tools/train.py configs/brnet/brnet_8x1_sunrgbd-3d-10class.py --seed 42

Demo

To test a 3D detector on point cloud data, please refer to Single modality demo and Point cloud demo in MMDetection3D docs.

Here, we provide a demo on SUN RGB-D dataset.

CUDA_VISIBLE_DEVICES=0 python demo/pcd_demo.py sunrgbd_000094.bin demo/brnet_8x1_sunrgbd-3d-10class.py checkpoints/brnet_8x1_sunrgbd-3d-10class_trained.pth

Visualization results

ScanNet

SUN RGB-D

Acknowledgments

Our code is heavily based on mmdetection3d. Thanks mmdetection3d Development Team for their awesome codebase.

Ackermann Line Follower Robot Simulation.

Ackermann Line Follower Robot This is a simulation of a line follower robot that works with steering control based on Stanley: The Robot That Won the

Lucas Mazzetto 2 Apr 16, 2022
One Metrics Library to Rule Them All!

onemetric Installation Install onemetric from PyPI (recommended): pip install onemetric Install onemetric from the GitHub source: git clone https://gi

Piotr Skalski 49 Jan 03, 2023
This repository lets you train neural networks models for performing end-to-end full-page handwriting recognition using the Apache MXNet deep learning frameworks on the IAM Dataset.

Handwritten Text Recognition (OCR) with MXNet Gluon These notebooks have been created by Jonathan Chung, as part of his internship as Applied Scientis

Amazon Web Services - Labs 422 Jan 03, 2023
chineseocr/table_line 表格线检测模型pytorch版

table_line_pytorch chineseocr/table_detct 表格线检测模型table_line pytorch版 原项目github: https://github.com/chineseocr/table-detect 1、模型转换 下载原项目table_detect模型文

1 Oct 21, 2021
A novel region proposal network for more general object detection ( including scene text detection ).

DeRPN: Taking a further step toward more general object detection DeRPN is a novel region proposal network which concentrates on improving the adaptiv

Deep Learning and Vision Computing Lab, SCUT 151 Dec 12, 2022
Generic framework for historical document processing

dhSegment dhSegment is a tool for Historical Document Processing. Its generic approach allows to segment regions and extract content from different ty

Digital Humanities Laboratory 343 Dec 24, 2022
A python scripts that uses 3 different feature extraction methods such as SIFT, SURF and ORB to find a book in a video clip and project trailer of a movie based on that book, on to it.

A python scripts that uses 3 different feature extraction methods such as SIFT, SURF and ORB to find a book in a video clip and project trailer of a movie based on that book, on to it.

tooraj taraz 3 Feb 10, 2022
Tensorflow-based CNN+LSTM trained with CTC-loss for OCR

Overview This collection demonstrates how to construct and train a deep, bidirectional stacked LSTM using CNN features as input with CTC loss to perfo

Jerod Weinman 489 Dec 21, 2022
Code release for our paper, "SimNet: Enabling Robust Unknown Object Manipulation from Pure Synthetic Data via Stereo"

SimNet: Enabling Robust Unknown Object Manipulation from Pure Synthetic Data via Stereo Thomas Kollar, Michael Laskey, Kevin Stone, Brijen Thananjeyan

68 Dec 14, 2022
Handwritten Number Recognition using CNN and Character Segmentation

Handwritten-Number-Recognition-With-Image-Segmentation Info About this repository This Repository is aimed at reading handwritten images of numbers an

Sparsha Saha 17 Aug 25, 2022
Ocular is a state-of-the-art historical OCR system.

Ocular Ocular is a state-of-the-art historical OCR system. Its primary features are: Unsupervised learning of unknown fonts: requires only document im

228 Dec 30, 2022
An Implementation of the seglink alogrithm in paper Detecting Oriented Text in Natural Images by Linking Segments

Tips: A more recent scene text detection algorithm: PixelLink, has been implemented here: https://github.com/ZJULearning/pixel_link Contents: Introduc

dengdan 484 Dec 07, 2022
deployment of a hybrid model for automatic weapon detection/ anomaly detection for surveillance applications

Automatic Weapon Detection Deployment of a hybrid model for automatic weapon detection/ anomaly detection for surveillance applications. Loved the pro

Janhavi 4 Mar 04, 2022
Textboxes implementation with Tensorflow (python)

tb_tensorflow A python implementation of TextBoxes Dependencies TensorFlow r1.0 OpenCV2 Code from Chaoyue Wang 03/09/2017 Update: 1.Debugging optimize

Jayne Shin (신재인) 20 May 31, 2019
This project modify tensorflow object detection api code to predict oriented bounding boxes. It can be used for scene text detection.

This is an oriented object detector based on tensorflow object detection API. Most of the code is not changed except for those related to the need of

Dafang He 30 Oct 22, 2022
MXNet OCR implementation. Including text recognition and detection.

insightocr Text Recognition Accuracy on Chinese dataset by caffe-ocr Network LSTM 4x1 Pooling Gray Test Acc SimpleNet N Y Y 99.37% SE-ResNet34 N Y Y 9

Deep Insight 99 Nov 01, 2022
code for our ICCV 2021 paper "DeepCAD: A Deep Generative Network for Computer-Aided Design Models"

DeepCAD This repository provides source code for our paper: DeepCAD: A Deep Generative Network for Computer-Aided Design Models Rundi Wu, Chang Xiao,

Rundi Wu 85 Dec 31, 2022
Official PyTorch implementation for "Mixed supervision for surface-defect detection: from weakly to fully supervised learning"

Mixed supervision for surface-defect detection: from weakly to fully supervised learning [Computers in Industry 2021] Official PyTorch implementation

ViCoS Lab 169 Dec 30, 2022
Face_mosaic - Mosaic blur processing is applied to multiple faces appearing in the video

動機 face_recognitionを使用して得られる顔座標は長方形であり、この座標をそのまま用いてぼかし処理を行った場合得られる画像は醜い。 それに対してモ

Yoshitsugu Kesamaru 6 Feb 03, 2022