PyTorch implementation of the WarpedGANSpace: Finding non-linear RBF paths in GAN latent space (ICCV 2021)

Overview

WarpedGANSpace: Finding non-linear RBF paths in GAN latent space

Authors official PyTorch implementation of the WarpedGANSpace: Finding non-linear RBF paths in GAN latent space (ICCV 2021). If you use this code for your research, please cite our paper.

Overview

In this work, we try to discover non-linear interpretable paths in GAN latent space. For doing so, we model non-linear paths using RBF-based warping functions, which by warping the latent space, endow it with vector fields (their gradients). We use the latter to traverse the latent space across the paths determined by the aforementioned vector fields for any given latent code.

WarpedGANSpace Overview

Each warping function is defined by a set of N support vectors (a "support set") and its gradient is given analytically as shown above. For a given warping function fk and a given latent code z, we traverse the latent space as illustrated below:

Non-linear interpretable path

Each warping function gives rise to a family of non-linear paths. We learn a set of such warping functions (implemented by the *Warping Network*), i.e., a set of such non-linear path families, so as they are distinguishable to each other; that is, the image transformations that they produce should be easily distinguishable be a discriminator network (the *Reconstructor*). An overview of the method is given below.

WarpedGANSpace Overview

Installation

We recommend installing the required packages using python's native virtual environment. For Python 3.4+, this can be done as follows:

$ python -m venv warped-gan-space
$ source warped-gan-space/bin/activate
(warped-gan-space) $ pip install --upgrade pip
(warped-gan-space) $ pip install -r requirements.txt

Prerequisite pretrained models

Download the prerequisite pretrained models (i.e., GAN generators, face detector, pose estimator, etc.) as follows:

$ python download.py	

This will create a directory models/pretrained with the following sub-directories (~3.2GiB):

./models/pretrained/
├── generators/
├── arcface/
├── fairface/
├── hopenet/
└── sfd/

Training

For training a WarpedGANSpace model you need to use train.py (check its basic usage by running python train.py -h).

For example, in order to train a WarpedGANSpace model on the ProgGAN pre-trained (on CelebA) generator for discovering K=128 interpretable paths (latent warping functions) with N=32 support dipoles each (i.e., 32 pairs of bipolar RBFs) run the following command:

python train.py -v --gan-type=ProgGAN --reconstructor-type=ResNet --learn-gammas --num-support-sets=128 --num-support-dipoles=32 --min-shift-magnitude=0.15 --max-shift-magnitude=0.25 --batch-size=8 --max-iter=200000

In the example above, batch size is set to 8 and the training will be conducted for 200000 iterations. Minimum and maximum shift magnitudes are set to 0.15 and 0.25, respectively (please see Sect. 3.2 in the paper for more details). A set of auxiliary training scripts (for all available GAN generators) can be found under scripts/train/.

The training script will create a directory with the following name format:


   
    (-
    
     )-
     
      -K
      
       -N
       
        (-LearnAlphas)(-LearnGammas)-eps
        
         _
          
         
        
       
      
     
    
   

E.g., ProgGAN-ResNet-K128-N128-LearnGammas-eps0.15_0.25, under experiments/wip/ while training is in progress, which after training completion, will be copied under experiments/complete/. This directory has the following structure:

├── models/
├── tensorboard/
├── args.json
├── stats.json
└── command.sh

where models/ contains the weights for the reconstructor (reconstructor.pt) and the support sets (support_sets.pt). While training is in progress (i.e., while this directory is found under experiments/wip/), the corresponding models/ directory contains a checkpoint file (checkpoint.pt) containing the last iteration, and the weights for the reconstructor and the support sets, so as to resume training. Re-run the same command, and if the last iteration is less than the given maximum number of iterations, training will resume from the last iteration. This directory will be referred to as EXP_DIR for the rest of this document.

Evaluation

After a WarpedGANSpace is trained, the corresponding experiment's directory (i.e., EXP_DIR) can be found under experiments/complete/. The evaluation of the model includes the following steps:

  • Latent space traversals For a given set of latent codes, we first generate images for all K paths (warping functions) and save the traversals (path latent codes and generated image sequences).
  • Attribute space traversals In the case of facial images (i.e., ProgGAN and StyleGAN2), for the latent traversals above, we calculate the corresponding attribute paths (i.e., facial expressions, pose, etc.).
  • Interpretable paths discovery and ranking [To Appear Soon]

Before calculating latent space traversals, you need to create a pool of latent codes/images for the corresponding GAN type. This can be done using sample_gan.py. The name of the pool can be passed using --pool; if left empty will be used instead. The pool of latent codes/images will be stored under experiments/latent_codes/ / . We will be referring to it as a POOL for the rest of this document.

For example, the following command will create a pool named ProgGAN_4 under experiments/latent_codes/ProgGAN/:

python sample_gan.py -v --gan-type=ProgGAN --num-samples=4

Latent space traversals

Latent space traversals can be calculated using the script traverse_latent_space.py (please check its basic usage by running traverse_latent_space.py -h) for a given model and a given POOL.

Attribute space traversals

[To Appear Soon]

Interpretable paths discovery and ranking

[To Appear Soon]

Citation

[1] Christos Tzelepis, Georgios Tzimiropoulos, and Ioannis Patras. WarpedGANSpace: Finding non-linear rbf paths in gan latent space. IEEE International Conference on Computer Vision (ICCV), 2021.

Bibtex entry:

@inproceedings{warpedganspace,
  title={{WarpedGANSpace}: Finding non-linear {RBF} paths in {GAN} latent space},
  author={Tzelepis, Christos and Tzimiropoulos, Georgios and Patras, Ioannis},
  booktitle={IEEE International Conference on Computer Vision (ICCV)},
  year={2021}
}

Acknowledgment

This research was supported by the EU's Horizon 2020 programme H2020-951911 AI4Media project.

Owner
Christos Tzelepis
Postdoctoral research associate at Queen Mary University of London | MultiMedia & Vision Research Group (MMV Group).
Christos Tzelepis
Fast Style Transfer in TensorFlow

Fast Style Transfer in TensorFlow Add styles from famous paintings to any photo in a fraction of a second! You can even style videos! It takes 100ms o

Jefferson 5 Oct 24, 2021
Discerning Decision-Making Process of Deep Neural Networks with Hierarchical Voting Transformation

Configurations Change HOME_PATH in CONFIG.py as the current path Data Prepare CENSINCOME Download data Put census-income.data and census-income.test i

2 Aug 14, 2022
Code and data of the Fine-Grained R2R Dataset proposed in paper Sub-Instruction Aware Vision-and-Language Navigation

Fine-Grained R2R Code and data of the Fine-Grained R2R Dataset proposed in the EMNLP2020 paper Sub-Instruction Aware Vision-and-Language Navigation. C

YicongHong 34 Nov 15, 2022
QTool: A Low-bit Quantization Toolbox for Deep Neural Networks in Computer Vision

This project provides abundant choices of quantization strategies (such as the quantization algorithms, training schedules and empirical tricks) for quantizing the deep neural networks into low-bit c

Monash Green AI Lab 51 Dec 10, 2022
Joint learning of images and text via maximization of mutual information

mutual_info_img_txt Joint learning of images and text via maximization of mutual information. This repository incorporates the algorithms presented in

Ruizhi Liao 10 Dec 22, 2022
HW3 ― GAN, ACGAN and UDA

HW3 ― GAN, ACGAN and UDA In this assignment, you are given datasets of human face and digit images. You will need to implement the models of both GAN

grassking100 1 Dec 13, 2021
FedTorch is an open-source Python package for distributed and federated training of machine learning models using PyTorch distributed API

FedTorch is a generic repository for benchmarking different federated and distributed learning algorithms using PyTorch Distributed API.

Machine Learning and Optimization Lab @PennState 136 Dec 23, 2022
The code for our paper "NSP-BERT: A Prompt-based Zero-Shot Learner Through an Original Pre-training Task —— Next Sentence Prediction"

The code for our paper "NSP-BERT: A Prompt-based Zero-Shot Learner Through an Original Pre-training Task —— Next Sentence Prediction"

Sun Yi 201 Nov 21, 2022
Distilling Motion Planner Augmented Policies into Visual Control Policies for Robot Manipulation (CoRL 2021)

Distilling Motion Planner Augmented Policies into Visual Control Policies for Robot Manipulation [Project website] [Paper] This project is a PyTorch i

Cognitive Learning for Vision and Robotics (CLVR) lab @ USC 6 Feb 28, 2022
Repository for publicly available deep learning models developed in Rosetta community

trRosetta2 This package contains deep learning models and related scripts used by Baker group in CASP14. Installation Linux/Mac clone the package git

81 Dec 29, 2022
EMNLP 2021 paper The Devil is in the Detail: Simple Tricks Improve Systematic Generalization of Transformers.

Codebase for training transformers on systematic generalization datasets. The official repository for our EMNLP 2021 paper The Devil is in the Detail:

Csordás Róbert 57 Nov 21, 2022
This project aims to be a handler for input creation and running of multiple RICEWQ simulations.

What is autoRICEWQ? This project aims to be a handler for input creation and running of multiple RICEWQ simulations. What is RICEWQ? From the descript

Yass Fuentes 1 Feb 01, 2022
Official implementation of "Intrinsic Dimension, Persistent Homology and Generalization in Neural Networks", NeurIPS 2021.

PHDimGeneralization Official implementation of "Intrinsic Dimension, Persistent Homology and Generalization in Neural Networks", NeurIPS 2021. Overvie

Tolga Birdal 13 Nov 08, 2022
Explore extreme compression for pre-trained language models

Code for paper "Exploring extreme parameter compression for pre-trained language models ICLR2022"

twinkle 16 Nov 14, 2022
Caffe models in TensorFlow

Caffe to TensorFlow Convert Caffe models to TensorFlow. Usage Run convert.py to convert an existing Caffe model to TensorFlow. Make sure you're using

Saumitro Dasgupta 2.8k Dec 31, 2022
Co-mining: Self-Supervised Learning for Sparsely Annotated Object Detection, AAAI 2021.

Co-mining: Self-Supervised Learning for Sparsely Annotated Object Detection This repository is an official implementation of the AAAI 2021 paper Co-mi

MEGVII Research 20 Dec 07, 2022
An Empirical Investigation of Model-to-Model Distribution Shifts in Trained Convolutional Filters

CNN-Filter-DB An Empirical Investigation of Model-to-Model Distribution Shifts in Trained Convolutional Filters Paul Gavrikov, Janis Keuper Paper: htt

Paul Gavrikov 18 Dec 30, 2022
Data, notebooks, and articles associated with the RSNA AI Deep Learning Lab at RSNA 2021

RSNA AI Deep Learning Lab 2021 Intro Welcome Deep Learners! This document provides all the information you need to participate in the RSNA AI Deep Lea

RSNA 65 Dec 16, 2022
A Library for Modelling Probabilistic Hierarchical Graphical Models in PyTorch

A Library for Modelling Probabilistic Hierarchical Graphical Models in PyTorch

Korbinian Pöppel 47 Nov 28, 2022
[CVPR 2022] Official code for the paper: "A Stitch in Time Saves Nine: A Train-Time Regularizing Loss for Improved Neural Network Calibration"

MDCA Calibration This is the official PyTorch implementation for the paper: "A Stitch in Time Saves Nine: A Train-Time Regularizing Loss for Improved

MDCA Calibration 21 Dec 22, 2022