A symbolic-model-guided fuzzer for TLS

Overview

tlspuffin

Logo with Penguin

TLS Protocol Under FuzzINg
A symbolic-model-guided fuzzer for TLS

Disclaimer: The term "symbolic-model-guided" should not be confused with symbolic execution or concolic fuzzing.

Description

Fuzzing implementations of cryptographic protocols is challenging. In contrast to traditional fuzzing of file formats, cryptographic protocols require a specific flow of cryptographic and mutually dependent messages to reach deep protocol states. The specification of the TLS protocol describes sound flows of messages and cryptographic operations.

Although the specification has been formally verified multiple times with significant results, a gap has emerged from the fact that implementations of the same protocol have not undergone the same logical analysis. Because the development of cryptographic protocols is error-prone, multiple security vulnerabilities have already been discovered in implementations in TLS which are not present in its specification.

Inspired by symbolic protocol verification, we present a reference implementation of a fuzzer named tlspuffin which employs a concrete semantic to execute TLS 1.2 and 1.3 symbolic traces. In fact attacks which mix \TLS versions are in scope of this implementation. This method allows us to utilize a genetic fuzzing algorithm to fuzz protocol flows, which is described by the following three stages.

  • By mutating traces we can deviate from the specification to test logical flaws.
  • Selection of interesting protocol flows advance the fuzzing procedure.
  • A security violation oracle supervises executions for the absence of vulnerabilities.

The novel approach allows rediscovering known vulnerabilities, which are out-of-scope for classical bit-level fuzzers. This proves that it is capable of reaching critical protocol states. In contrast to the promising methodology no new vulnerabilities were found by tlspuffin. This can can be explained by the fact that the implementation effort of TLS protocol primitives and extensions is high and not all features of the specification have been implemented. Nonetheless, the innovating approach is promising in terms of quickly reaching high edge coverage, expressiveness of executable protocol traces and stable and extensible implementation.

Features

  • Uses the LibAFL fuzzing framework
  • Fuzzer which is inspired by the Dolev-Yao symbolic model used in protocol verification
  • Domain specific mutators for Protocol Fuzzing!
  • Supported Libraries Under Test: OpenSSL 1.0.1f, 1.0.2u, 1.1.1k and LibreSSL 3.3.3
  • Reproducible for each LUT. We use Git submodules to link to forks this are in the tlspuffin organisation
  • 70% Test Coverage
  • Writtin in Rust!

Building

Now, to build the project:

git clone [email protected]/tlspuffin/tlspuffin
git submodule update --init --recursive
cargo build

Running

Fuzz using three clients:

cargo run --bin tlspuffin -- --cores 0-3

Note: After switching the Library Under Test or its version do a clean rebuild (cargo clean). For example when switching from OpenSSL 1.0.1 to 1.1.1.

Testing

cargo test

Command-line Interface

The syntax for the command-line of is:

      tlspuffin [⟨options] [⟨sub-commands⟩]

Global Options

Before we explain each sub-command, we first go over the options in the following.

  • -c, --cores ⟨spec⟩

    This option specifies on which cores the fuzzer should assign its worker processes. It can either be specified as a list by using commas "0,1,2,7" or as a range "0-7". By default, it runs just on core 0.

  • -i, --max-iters ⟨i⟩

    This option allows to bound the amount of iterations the fuzzer does. If omitted, then infinite iterations are done.

  • -p, --port ⟨n⟩

    As specified in [sec:design-multiprocessing] the initial communication between the fuzzer broker and workers happens over TCP/IP. Therefore, the broker requires a port allocation. The default port is 1337.

  • -s, --seed ⟨n⟩

    Defines an initial seed for the prng used for mutations. Note that this does not make the fuzzing deterministic, because of randomness introduced by the multiprocessing (see [sec:design-multiprocessing]).

Sub-commands

Now we will go over the sub-commands execute, plot, experiment, and seed.

  • execute ⟨input⟩

    This sub-command executes a single trace persisted in a file. The path to the file is provided by the ⟨input⟩ argument.

  • plot ⟨input⟩ ⟨format⟩ ⟨output_prefix⟩

    This sub-command plots the trace stored at ⟨input⟩ in the format specified by ⟨format⟩. The created graphics are stored at a path provided by ⟨output_prefix⟩. The option --multiple can be provided to create for each step in the trace a separate file. If the option --tree is given, then only a single graphic which contains all steps is produced.

  • experiment

    This sub-command initiates an experiment. Experiments are stored in a directory named experiments/ in the current working directory. An experiment consists of a directory which contains . The title and description of the experiment can be specified with --title ⟨t⟩ and --description ⟨d⟩ respectively. Both strings are persisted in the metadata of the experiment, together with the current commit hash of , the version and the current date and time.

  • seed

    This sub-command serializes the default seed corpus in a directory named corpus/ in the current working directory. The default corpus is defined in the source code of using the trace dsl.

Rust Setup

Install rustup.

The toolchain will be automatically downloaded when building this project. See ./rust-toolchain.toml for more details about the toolchain.

Make sure that you have the clang compiler installed. Optionally, also install llvm to have additional tools like sancov available. Also make sure that you have the usual tools for building it like make, gcc etc. installed. They may be needed to build OpenSSL.

Advanced Features

Running with ASAN

ASAN_OPTIONS=abort_on_error=1 \
    cargo run --bin tlspuffin --features asan -- --cores 0-3

It is important to enable abort_on_error, else the fuzzer workers fail to restart on crashes.

Generate Corpus Seeds

cargo run --bin tlspuffin -- seed

Plot Symbolic Traces

To plot SVGs do the following:

cargo run --bin tlspuffin -- plot corpus/seed_client_attacker12.trace svg ./plots/seed_client_attacker12

Note: This requires that the dot binary is in on your path. Note: The utility tools/plot-corpus.sh plots a whole directory

Execute a Symbolic Trace (with ASAN)

To analyze crashes you can also execute a trace which crashes the testing harness using ASAN:

cargo run --bin tlspuffin -- execute test.trace

To do the same with ASAN enabled:

ASAN_OPTIONS=detect_leaks=0 \
      cargo run --bin tlspuffin --features asan -- execute test.trace

Crash Deduplication

Creates log files for each crash and parses ASAN crashes to group crashes together.

tools/analyze-crashes.sh

Benchmarking

There is a benchmark which compares the execution of the dynamic functions to directly executing them in benchmark.rs. You can run them using:

cargo bench
xdg-open target/criterion/report/index.html

Documentation

This generates the documentation for this crate and opens the browser. This also includes the documentation of every dependency like LibAFL or rustls.

cargo doc --open

You can also view the up-to-date documentation here.

You might also like...
Theano is a Python library that allows you to define, optimize, and evaluate mathematical expressions involving multi-dimensional arrays efficiently. It can use GPUs and perform efficient symbolic differentiation.

============================================================================================================ `MILA will stop developing Theano https:

ATOMIC 2020: On Symbolic and Neural Commonsense Knowledge Graphs
ATOMIC 2020: On Symbolic and Neural Commonsense Knowledge Graphs

(Comet-) ATOMIC 2020: On Symbolic and Neural Commonsense Knowledge Graphs Paper Jena D. Hwang, Chandra Bhagavatula, Ronan Le Bras, Jeff Da, Keisuke Sa

PIGLeT: Language Grounding Through Neuro-Symbolic Interaction in a 3D World [ACL 2021]

piglet PIGLeT: Language Grounding Through Neuro-Symbolic Interaction in a 3D World [ACL 2021] This repo contains code and data for PIGLeT. If you like

Symbolic Parallel Adaptive Importance Sampling for Probabilistic Program Analysis in JAX

SYMPAIS: Symbolic Parallel Adaptive Importance Sampling for Probabilistic Program Analysis Overview | Installation | Documentation | Examples | Notebo

Official repository for the paper, MidiBERT-Piano: Large-scale Pre-training for Symbolic Music Understanding.
Official repository for the paper, MidiBERT-Piano: Large-scale Pre-training for Symbolic Music Understanding.

MidiBERT-Piano Authors: Yi-Hui (Sophia) Chou, I-Chun (Bronwin) Chen Introduction This is the official repository for the paper, MidiBERT-Piano: Large-

Source code and Dataset creation for the paper "Neural Symbolic Regression That Scales"

NeuralSymbolicRegressionThatScales Pytorch implementation and pretrained models for the paper "Neural Symbolic Regression That Scales", presented at I

Data and Code for ACL 2021 Paper
Data and Code for ACL 2021 Paper "Inter-GPS: Interpretable Geometry Problem Solving with Formal Language and Symbolic Reasoning"

Introduction Code and data for ACL 2021 Paper "Inter-GPS: Interpretable Geometry Problem Solving with Formal Language and Symbolic Reasoning". We cons

PyBullet CartPole and Quadrotor environments—with CasADi symbolic a priori dynamics—for learning-based control and reinforcement learning
PyBullet CartPole and Quadrotor environments—with CasADi symbolic a priori dynamics—for learning-based control and reinforcement learning

safe-control-gym Physics-based CartPole and Quadrotor Gym environments (using PyBullet) with symbolic a priori dynamics (using CasADi) for learning-ba

Driller: augmenting AFL with symbolic execution!

Driller Driller is an implementation of the driller paper. This implementation was built on top of AFL with angr being used as a symbolic tracer. Dril

Comments
  • Support for WolfSSL through a new rust-wolfssl crate

    Support for WolfSSL through a new rust-wolfssl crate

    I tried another approach as I struggled with #136 to debug some SEGFAULT.

    Here the approach is to clone rust-openssl, minimize the exposed interface while exposing what we need for wolfssl_binding.rs, then plug in wolfssl-sys instead of openssl-sys.

    opened by LCBH 3
  • Rediscover wolfSSL vulnerabilities

    Rediscover wolfSSL vulnerabilities

    • CVE-2020-12457 in <4.5.0 https://nvd.nist.gov/vuln/detail/CVE-2020-12457 (DDOS against server, needs change_cipher_spec (CCS) message mutations)
    • CVE 2020-24613 in <4.5.0 https://nvd.nist.gov/vuln/detail/CVE-2020-24613 in < 4.5.0, TLS 1.3 server auth. bypass
    • CVE-2021-3336 in < 4.7.0 https://nvd.nist.gov/vuln/detail/CVE-2021-3336, TLS 1.3 server auth. bypass
    • CVE 2022-25638 in < 5.2.0 https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2022-25638, TLS 1.3 server auth. bypass
    • CVE-2022-25640 in <5.2.0 https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2022-25640 (attack on client authentication, needs client authentication through cert.)
    opened by maxammann 1
Releases(evaluation)
Official implementation of NeurIPS 2021 paper "One Loss for All: Deep Hashing with a Single Cosine Similarity based Learning Objective"

Official implementation of NeurIPS 2021 paper "One Loss for All: Deep Hashing with a Single Cosine Similarity based Learning Objective"

Ng Kam Woh 71 Dec 22, 2022
LoveDA: A Remote Sensing Land-Cover Dataset for Domain Adaptive Semantic Segmentation

LoveDA: A Remote Sensing Land-Cover Dataset for Domain Adaptive Semantic Segmentation by Junjue Wang, Zhuo Zheng, Ailong Ma, Xiaoyan Lu, and Yanfei Zh

Payphone 8 Nov 21, 2022
Survival analysis (SA) is a well-known statistical technique for the study of temporal events.

DAGSurv Survival analysis (SA) is a well-known statistical technique for the study of temporal events. In SA, time-to-an-event data is modeled using a

Rahul Kukreja 1 Sep 05, 2022
Pseudo lidar - (CVPR 2019) Pseudo-LiDAR from Visual Depth Estimation: Bridging the Gap in 3D Object Detection for Autonomous Driving

Pseudo-LiDAR from Visual Depth Estimation: Bridging the Gap in 3D Object Detection for Autonomous Driving This paper has been accpeted by Conference o

Yan Wang 881 Dec 27, 2022
Implementation of Kaneko et al.'s MaskCycleGAN-VC model for non-parallel voice conversion.

MaskCycleGAN-VC Unofficial PyTorch implementation of Kaneko et al.'s MaskCycleGAN-VC (2021) for non-parallel voice conversion. MaskCycleGAN-VC is the

86 Dec 25, 2022
Style transfer between images was performed using the VGG19 model

Style transfer between images was performed using the VGG19 model. The necessary codes, libraries and all other information of this project are available below

Onur yılmaz 2 May 09, 2022
Large Scale Fine-Grained Categorization and Domain-Specific Transfer Learning. CVPR 2018

Large Scale Fine-Grained Categorization and Domain-Specific Transfer Learning Tensorflow code and models for the paper: Large Scale Fine-Grained Categ

Yin Cui 187 Oct 01, 2022
Pseudo-rng-app - whos needs science to make a random number when you have pseudoscience?

Pseudo-random numbers with pseudoscience rng is so complicated! Why cant we have a horoscopic, vibe-y way of calculating a random number? Why cant rng

Andrew Blance 1 Dec 27, 2021
PaRT: Parallel Learning for Robust and Transparent AI

PaRT: Parallel Learning for Robust and Transparent AI This repository contains the code for PaRT, an algorithm for training a base network on multiple

Mahsa 0 May 02, 2022
Hypersearch weight debugging and losses tutorial

tutorial Activate tensorboard option Running TensorBoard remotely When working on a remote server, you can use SSH tunneling to forward the port of th

1 Dec 11, 2021
PyTorch implementation of Tacotron speech synthesis model.

tacotron_pytorch PyTorch implementation of Tacotron speech synthesis model. Inspired from keithito/tacotron. Currently not as much good speech quality

Ryuichi Yamamoto 279 Dec 09, 2022
Pytorch implementation for "Density-aware Chamfer Distance as a Comprehensive Metric for Point Cloud Completion" (NeurIPS 2021)

Density-aware Chamfer Distance This repository contains the official PyTorch implementation of our paper: Density-aware Chamfer Distance as a Comprehe

Tong WU 93 Dec 15, 2022
Stacked Generative Adversarial Networks

Stacked Generative Adversarial Networks This repository contains code for the paper "Stacked Generative Adversarial Networks", CVPR 2017. Part of the

Xun Huang 241 May 07, 2022
The code for our paper Semi-Supervised Learning with Multi-Head Co-Training

Semi-Supervised Learning with Multi-Head Co-Training (PyTorch) Abstract Co-training, extended from self-training, is one of the frameworks for semi-su

cmc 6 Dec 04, 2022
Code for "Training Neural Networks with Fixed Sparse Masks" (NeurIPS 2021).

Fisher Induced Sparse uncHanging (FISH) Mask This repo contains the code for Fisher Induced Sparse uncHanging (FISH) Mask training, from "Training Neu

Varun Nair 37 Dec 30, 2022
Augmented CLIP - Training simple models to predict CLIP image embeddings from text embeddings, and vice versa.

Train aug_clip against laion400m-embeddings found here: https://laion.ai/laion-400-open-dataset/ - note that this used the base ViT-B/32 CLIP model. S

Peter Baylies 55 Sep 13, 2022
Unsupervised Video Interpolation using Cycle Consistency

Unsupervised Video Interpolation using Cycle Consistency Project | Paper | YouTube Unsupervised Video Interpolation using Cycle Consistency Fitsum A.

NVIDIA Corporation 100 Nov 30, 2022
Reinforcement learning for self-driving in a 3D simulation

SelfDrive_AI Reinforcement learning for self-driving in a 3D simulation (Created using UNITY-3D) 1. Requirements for the SelfDrive_AI Gym You need Pyt

Surajit Saikia 17 Dec 14, 2021
SCAN: Learning to Classify Images without Labels, incl. SimCLR. [ECCV 2020]

Learning to Classify Images without Labels This repo contains the Pytorch implementation of our paper: SCAN: Learning to Classify Images without Label

Wouter Van Gansbeke 1.1k Dec 30, 2022
Repository for the electrical and ICT benchmark model developed in the ERIGrid 2.0 project.

Benchmark Model Electrical and ICT System This repository contains the documentation, code, and models for the electrical and ICT benchmark model deve

ERIGrid 2.0 1 Nov 29, 2021