Source code and Dataset creation for the paper "Neural Symbolic Regression That Scales"

Overview

NeuralSymbolicRegressionThatScales

Pytorch implementation and pretrained models for the paper "Neural Symbolic Regression That Scales", presented at ICML 2021. Our deep-learning based approach is the first symbolic regression method that leverages large scale pre-training. We procedurally generate an unbounded set of equations, and simultaneously pre-train a Transformer to predict the symbolic equation from a corresponding set of input-output-pairs.

For details, see Neural Symbolic Regression That Scales. [arXiv]

Installation

Please clone and install this repository via

git clone https://github.com/SymposiumOrganization/NeuralSymbolicRegressionThatScales.git
cd NeuralSymbolicRegressionThatScales/
pip3 install -e src/

This library requires python>3.7

Pretrained models

We offer two models, "10M" and "100M". Both are trained with parameter configuration showed in dataset_configuration.json (which contains details about how datasets are created) and scripts/config.yaml (which contains details of how models are trained). "10M" model is trained with 10 million datasets and "100M" model is trained with 100 millions dataset.

  • Link to 100M: [Link]
  • Link to 10M: [Link]

If you want to try the models out, look at jupyter/fit_func.ipynb. Before running the notebook, make sure to first create a folder named "weights" and to download the provided checkpoints there.

Dataset Generation

Before training, you need a dataset of equations. Here the steps to follow

Raw training dataset generation

The equation generator scripts are based on [SymbolicMathematics] First, if you want to change the defaults value, configure the dataset_configuration.json file:

{
    "max_len": 20, #Maximum length of an equation
    "operators": "add:10,mul:10,sub:5,div:5,sqrt:4,pow2:4,pow3:2,pow4:1,pow5:1,ln:4,exp:4,sin:4,cos:4,tan:4,asin:2", #Operator unnormalized probability
    "max_ops": 5, #Maximum number of operations
    "rewrite_functions": "", #Not used, leave it empty
    "variables": ["x_1","x_2","x_3"], #Variable names, if you want to add more add follow the convention i.e. x_4, x_5,... and so on
    "eos_index": 1,
    "pad_index": 0
}

There are two ways to generate this dataset:

  • If you are running on linux, you use makefile in terminal as follows:
export NUM=${NumberOfEquations} #Export num of equations
make data/raw_datasets/${NUM}: #Launch make file command

NumberOfEquations can be defined in two formats with K or M suffix. For instance 100K is equal to 100'000 while 10M is equal to 10'0000000 For example, if you want to create a 10M dataset simply:

export NUM=10M #Export num variable
make data/raw_datasets/10M: #Launch make file command
  • Run this script:
python3 scripts/data_creation/dataset_creation.py --number_of_equations NumberOfEquations --no-debug #Replace NumberOfEquations with the number of equations you want to generate

After this command you will have a folder named data/raw_data/NumberOfEquations containing .h5 files. By default, each of this h5 files contains a maximum of 5e4 equations.

Raw test dataset generation

This step is optional. You can skip it if you want to use our test set used for the paper (located in test_set/nc.csv). Use the same commands as before for generating a validation dataset. All equations in this dataset will be remove from the training dataset in the next stage, hence this validation dataset should be small. For our paper it constisted of 200 equations.

#Code for generating a 150 equation dataset 
python3 scripts/data_creation/dataset_creation.py --number_of_equations 150 --no-debug #This code creates a new folder data/raw_datasets/150

If you want, you can convert the newly created validation dataset in a csv format. To do so, run: python3 scripts/csv_handling/dataload_format_to_csv.py raw_test_path=data/raw_datasets/150 This command will create two csv files named test_nc.csv (equations without constants) and test_wc.csv (equation with constants) in the test_set folder.

Remove test and numerical problematic equations from the training dataset

The following steps will remove the validation equations from the training set and remove equations that are always nan, inf, etc.

  • path_to_data_folder=data/raw_datasets/100000 if you have created a 100K dataset
  • path_to_csv=test_set/test_nc.csv if you have created 150 equations for validation. If you want to use the one in the paper replace it with nc.csv
python3 scripts/data_creation/filter_from_already_existing.py --data_path path_to_data_folder --csv_path path_to_csv #You can leave csv_path empty if you do not want to create a validation set
python3 scripts/data_creation/apply_filtering.py --data_path path_to_data_folder 

You should now have a folder named data/datasets/100000. This will be the training folder.

Training

Once you have created your training and validation datasets run

python3 scripts/train.py

You can configure the config.yaml with the necessary options. Most important, make sure you have set train_path and val_path correctly. If you have followed the 100K example this should be set as:

train_path:  data/datasets/100000
val_path: data/raw_datasets/150
Contains modeling practice materials and homework for the Computational Neuroscience course at Okinawa Institute of Science and Technology

A310 Computational Neuroscience - Okinawa Institute of Science and Technology, 2022 This repository contains modeling practice materials and homework

Sungho Hong 1 Jan 24, 2022
[CVPR2021] De-rendering the World's Revolutionary Artefacts

De-rendering the World's Revolutionary Artefacts Project Page | Video | Paper In CVPR 2021 Shangzhe Wu1,4, Ameesh Makadia4, Jiajun Wu2, Noah Snavely4,

49 Nov 06, 2022
Expand human face editing via Global Direction of StyleCLIP, especially to maintain similarity during editing.

Oh-My-Face This project is based on StyleCLIP, RIFE, and encoder4editing, which aims to expand human face editing via Global Direction of StyleCLIP, e

AiLin Huang 51 Nov 17, 2022
Tensorflow implementation for Self-supervised Graph Learning for Recommendation

If the compilation is successful, the evaluator of cpp implementation will be called automatically. Otherwise, the evaluator of python implementation will be called.

152 Jan 07, 2023
A modern pure-Python library for reading PDF files

pdf A modern pure-Python library for reading PDF files. The goal is to have a modern interface to handle PDF files which is consistent with itself and

6 Apr 06, 2022
Deep Networks with Recurrent Layer Aggregation

RLA-Net: Recurrent Layer Aggregation Recurrence along Depth: Deep Networks with Recurrent Layer Aggregation This is an implementation of RLA-Net (acce

Joy Fang 21 Aug 16, 2022
Implementation of CVPR'2022:Reconstructing Surfaces for Sparse Point Clouds with On-Surface Priors

Reconstructing Surfaces for Sparse Point Clouds with On-Surface Priors (CVPR 2022) Personal Web Pages | Paper | Project Page This repository contains

151 Dec 26, 2022
This application explain how we can easily integrate Deepface framework with Python Django application

deepface_suite This application explain how we can easily integrate Deepface framework with Python Django application install redis cache install requ

Mohamed Naji Aboo 3 Apr 18, 2022
The repository for the paper "When Do You Need Billions of Words of Pretraining Data?"

pretraining-learning-curves This is the repository for the paper When Do You Need Billions of Words of Pretraining Data? Edge Probing We use jiant1 fo

ML² AT CILVR 19 Nov 25, 2022
Implementation of Ag-Grid component for Streamlit

streamlit-aggrid AgGrid is an awsome grid for web frontend. More information in https://www.ag-grid.com/. Consider purchasing a license from Ag-Grid i

Pablo Fonseca 556 Dec 31, 2022
Experiments on Flood Segmentation on Sentinel-1 SAR Imagery with Cyclical Pseudo Labeling and Noisy Student Training

Flood Detection Challenge This repository contains code for our submission to the ETCI 2021 Competition on Flood Detection (Winning Solution #2). Acco

Siddha Ganju 108 Dec 28, 2022
Official implementation of Deep Reparametrization of Multi-Frame Super-Resolution and Denoising

Deep-Rep-MFIR Official implementation of Deep Reparametrization of Multi-Frame Super-Resolution and Denoising Publication: Deep Reparametrization of M

Goutam Bhat 39 Jan 04, 2023
PushForKiCad - AISLER Push for KiCad EDA

AISLER Push for KiCad Push your layout to AISLER with just one click for instant

AISLER 31 Dec 29, 2022
Implementation of "Deep Implicit Templates for 3D Shape Representation"

Deep Implicit Templates for 3D Shape Representation Zerong Zheng, Tao Yu, Qionghai Dai, Yebin Liu. arXiv 2020. This repository is an implementation fo

Zerong Zheng 144 Dec 07, 2022
PyTorch Implementation of [1611.06440] Pruning Convolutional Neural Networks for Resource Efficient Inference

PyTorch implementation of [1611.06440 Pruning Convolutional Neural Networks for Resource Efficient Inference] This demonstrates pruning a VGG16 based

Jacob Gildenblat 836 Dec 26, 2022
Towards Flexible Blind JPEG Artifacts Removal (FBCNN, ICCV 2021)

Towards Flexible Blind JPEG Artifacts Removal (FBCNN, ICCV 2021)

Jiaxi Jiang 282 Jan 02, 2023
Fully Convolutional Networks for Semantic Segmentation by Jonathan Long*, Evan Shelhamer*, and Trevor Darrell. CVPR 2015 and PAMI 2016.

Fully Convolutional Networks for Semantic Segmentation This is the reference implementation of the models and code for the fully convolutional network

Evan Shelhamer 3.2k Jan 08, 2023
Dataset para entrenamiento de yoloV3 para 4 clases

Deteccion de objetos en video Este repo basado en el proyecto PyTorch YOLOv3 para correr detección de objetos sobre video. Construí sobre este proyect

1 Nov 01, 2021
Code for the ECCV2020 paper "A Differentiable Recurrent Surface for Asynchronous Event-Based Data"

A Differentiable Recurrent Surface for Asynchronous Event-Based Data Code for the ECCV2020 paper "A Differentiable Recurrent Surface for Asynchronous

Marco Cannici 21 Oct 05, 2022
Compares various time-series feature sets on computational performance, within-set structure, and between-set relationships.

feature-set-comp Compares various time-series feature sets on computational performance, within-set structure, and between-set relationships. Reposito

Trent Henderson 7 May 25, 2022