A Prometheus Python client library for asyncio-based applications

Overview
https://github.com/claws/aioprometheus/workflows/Python%20Package%20Workflow/badge.svg?branch=master https://readthedocs.org/projects/aioprometheus/badge/?version=latest

aioprometheus

aioprometheus is a Prometheus Python client library for asyncio-based applications. It provides metrics collection and serving capabilities, supports multiple data formats and pushing metrics to a gateway.

The project documentation can be found on ReadTheDocs.

Install

$ pip install aioprometheus

A Prometheus Push Gateway client and ASGI service are also included, but their dependencies are not installed by default. You can install them alongside aioprometheus by running:

$ pip install aioprometheus[aiohttp]

Prometheus 2.0 removed support for the binary protocol, so in version 20.0.0 the dependency on prometheus-metrics-proto, which provides binary support, is now optional. If you want binary response support, for use with an older Prometheus, you will need to specify the 'binary' optional extra:

$ pip install aioprometheus[binary]

Multiple optional dependencies can be listed at once, such as:

$ pip install aioprometheus[aiohttp,binary]

Example

The example below shows a single Counter metric collector being created and exposed via the optional aiohttp service endpoint.

#!/usr/bin/env python
"""
This example demonstrates how a single Counter metric collector can be created
and exposed via a HTTP endpoint.
"""
import asyncio
import socket
from aioprometheus import Counter, Service


if __name__ == "__main__":

    async def main(svr: Service) -> None:

        events_counter = Counter(
            "events", "Number of events.", const_labels={"host": socket.gethostname()}
        )
        svr.register(events_counter)
        await svr.start(addr="127.0.0.1", port=5000)
        print(f"Serving prometheus metrics on: {svr.metrics_url}")

        # Now start another coroutine to periodically update a metric to
        # simulate the application making some progress.
        async def updater(c: Counter):
            while True:
                c.inc({"kind": "timer_expiry"})
                await asyncio.sleep(1.0)

        await updater(events_counter)

    loop = asyncio.get_event_loop()
    svr = Service()
    try:
        loop.run_until_complete(main(svr))
    except KeyboardInterrupt:
        pass
    finally:
        loop.run_until_complete(svr.stop())
    loop.close()

In this simple example the counter metric is tracking the number of while loop iterations executed by the updater coroutine. In a realistic application a metric might track the number of requests, etc.

Following typical asyncio usage, an event loop is instantiated first then a metrics service is instantiated. The metrics service is responsible for managing metric collectors and responding to metrics requests.

The service accepts various arguments such as the interface and port to bind to. A collector registry is used within the service to hold metrics collectors that will be exposed by the service. The service will create a new collector registry if one is not passed in.

A counter metric is created and registered with the service. The service is started and then a coroutine is started to periodically update the metric to simulate progress.

This example and demonstration requires some optional extra to be installed.

$ pip install aioprometheus[aiohttp,binary]

The example script can then be run using:

(venv) $ cd examples
(venv) $ python simple-example.py
Serving prometheus metrics on: http://127.0.0.1:5000/metrics

In another terminal fetch the metrics using the curl command line tool to verify they can be retrieved by Prometheus server.

By default metrics will be returned in plan text format.

$ curl http://127.0.0.1:5000/metrics
# HELP events Number of events.
# TYPE events counter
events{host="alpha",kind="timer_expiry"} 33

Similarly, you can request metrics in binary format, though the output will be hard to read on the command line.

$ curl http://127.0.0.1:5000/metrics -H "ACCEPT: application/vnd.google.protobuf; proto=io.prometheus.client.MetricFamily; encoding=delimited"

The metrics service also responds to requests sent to its / route. The response is simple HTML. This route can be useful as a Kubernetes /healthz style health indicator as it does not incur any overhead within the service to serialize a full metrics response.

$ curl http://127.0.0.1:5000/
<html><body><a href='/metrics'>metrics</a></body></html>

The aioprometheus package provides a number of convenience decorator functions that can assist with updating metrics.

The examples directory contains many examples showing how to use the aioprometheus package. The app-example.py file will likely be of interest as it provides a more representative application example than the simple example shown above.

Examples in the examples/frameworks directory show how aioprometheus can be used within various web application frameworks without needing to create a separate aioprometheus.Service endpoint to handle metrics. The FastAPI example is shown below.

#!/usr/bin/env python
"""
Sometimes you may not want to expose Prometheus metrics from a dedicated
Prometheus metrics server but instead want to use an existing web framework.

This example uses the registry from the aioprometheus package to add
Prometheus instrumentation to a FastAPI application. In this example a registry
and a counter metric is instantiated and gets updated whenever the "/" route
is accessed. A '/metrics' route is added to the application using the standard
web framework method. The metrics route renders Prometheus metrics into the
appropriate format.

Run:

  $ pip install fastapi uvicorn
  $ uvicorn fastapi_example:app

"""

from aioprometheus import render, Counter, Registry
from fastapi import FastAPI, Header, Response
from typing import List


app = FastAPI()
app.registry = Registry()
app.events_counter = Counter("events", "Number of events.")
app.registry.register(app.events_counter)


@app.get("/")
async def hello():
    app.events_counter.inc({"path": "/"})
    return "hello"


@app.get("/metrics")
async def handle_metrics(response: Response, accept: List[str] = Header(None)):
    content, http_headers = render(app.registry, accept)
    return Response(content=content, media_type=http_headers["Content-Type"])

License

aioprometheus is released under the MIT license.

aioprometheus originates from the (now deprecated) prometheus python package which was released under the MIT license. aioprometheus continues to use the MIT license and contains a copy of the original MIT license from the prometheus-python project as instructed by the original license.

Deploy an inference API on AWS (EC2) using FastAPI Docker and Github Actions

Deploy an inference API on AWS (EC2) using FastAPI Docker and Github Actions To learn more about this project: medium blog post The goal of this proje

Ahmed BESBES 60 Dec 17, 2022
Async and Sync wrapper client around httpx, fastapi, date stuff

lazyapi Async and Sync wrapper client around httpx, fastapi, and datetime stuff. Motivation This library is forked from an internal project that works

2 Apr 19, 2022
The base to start an openapi project featuring: SQLModel, Typer, FastAPI, JWT Token Auth, Interactive Shell, Management Commands.

The base to start an openapi project featuring: SQLModel, Typer, FastAPI, JWT Token Auth, Interactive Shell, Management Commands.

Bruno Rocha 251 Jan 09, 2023
Htmdf - html to pdf with support for variables using fastApi.

htmdf Converts html to pdf with support for variables using fastApi. Installation Clone this repository. git clone https://github.com/ShreehariVaasish

Shreehari 1 Jan 30, 2022
This is a FastAPI application that provides a RESTful API for the Podcasts from different podcast's RSS feeds

The Podcaster API This is a FastAPI application that provides a RESTful API for the Podcasts from different podcast's RSS feeds. The API response is i

Sagar Giri 2 Nov 07, 2021
Code for my JWT auth for FastAPI tutorial

FastAPI tutorial Code for my video tutorial FastAPI tutorial What is FastAPI? FastAPI is a high-performant REST API framework for Python. It's built o

José Haro Peralta 8 Dec 16, 2022
Adds integration of the Jinja template language to FastAPI.

fastapi-jinja Adds integration of the Jinja template language to FastAPI. This is inspired and based off fastapi-chamelon by Mike Kennedy. Check that

Marc Brooks 58 Nov 29, 2022
📦 Autowiring dependency injection container for python 3

Lagom - Dependency injection container What Lagom is a dependency injection container designed to give you "just enough" help with building your depen

Steve B 146 Dec 29, 2022
A minimalistic example of preparing a model for (synchronous) inference in production.

A minimalistic example of preparing a model for (synchronous) inference in production.

Anton Lozhkov 6 Nov 29, 2021
A Python pickling decompiler and static analyzer

Fickling Fickling is a decompiler, static analyzer, and bytecode rewriter for Python pickle object serializations. Pickled Python objects are in fact

Trail of Bits 162 Dec 13, 2022
First API using FastApi

First API using FastApi Made this Simple Api to store and Retrive Student Data of My College Ncc-Bim To View All the endpoits Visit /docs To Run Local

Sameer Joshi 2 Jun 21, 2022
FastAPI Skeleton App to serve machine learning models production-ready.

FastAPI Model Server Skeleton Serving machine learning models production-ready, fast, easy and secure powered by the great FastAPI by Sebastián Ramíre

268 Jan 01, 2023
A Nepali Dictionary API made using FastAPI.

Nepali Dictionary API A Nepali dictionary api created using Fast API and inspired from https://github.com/nirooj56/Nepdict. You can say this is just t

Nishant Sapkota 4 Mar 18, 2022
Recommend recipes based on what ingredients you have at home

🌱 MyChef 📦 Overview MyChef is an application that helps you decide what meal to make based on what you have at home. Simply enter in ingredients you

Logan Connolly 44 Nov 08, 2022
Money Transaction is a system based on the recent famous FastAPI.

moneyTransfer Overview Money Transaction is a system based on the recent famous FastAPI. techniques selection System's technique selection is as follo

2 Apr 28, 2021
TODO aplication made with Python's FastAPI framework and Hexagonal Architecture

FastAPI Todolist Description Todolist aplication made with Python's FastAPI framework and Hexagonal Architecture. This is a test repository for the pu

Giovanni Armane 91 Dec 31, 2022
Publish Xarray Datasets via a REST API.

Xpublish Publish Xarray Datasets via a REST API. Serverside: Publish a Xarray Dataset through a rest API ds.rest.serve(host="0.0.0.0", port=9000) Clie

xarray-contrib 106 Jan 06, 2023
Reusable utilities for FastAPI

Reusable utilities for FastAPI Documentation: https://fastapi-utils.davidmontague.xyz Source Code: https://github.com/dmontagu/fastapi-utils FastAPI i

David Montague 1.3k Jan 04, 2023
OpenAPI generated FastAPI server

OpenAPI generated FastAPI server This Python package is automatically generated by the OpenAPI Generator project: API version: 1.0.0 Build package: or

microbo 1 Oct 31, 2021
Backend Skeleton using FastAPI and Sqlalchemy ORM

Backend API Skeleton Based on @tiangolo's full stack postgres template, with some things added, some things removed, and some things changed. This is

David Montague 18 Oct 31, 2022