Code for the SIGGRAPH 2022 paper "DeltaConv: Anisotropic Operators for Geometric Deep Learning on Point Clouds."

Overview

DeltaConv

[Paper] [Project page]

Code for the SIGGRAPH 2022 paper "DeltaConv: Anisotropic Operators for Geometric Deep Learning on Point Clouds" by Ruben Wiersma, Ahmad Nasikun, Elmar Eisemann, and Klaus Hildebrandt.

Anisotropic convolution is a central building block of CNNs but challenging to transfer to surfaces. DeltaConv learns combinations and compositions of operators from vector calculus, which are a natural fit for curved surfaces. The result is a simple and robust anisotropic convolution operator for point clouds with state-of-the-art results.

Top: unlike images, surfaces have no global coordinate system. Bottom: DeltaConv learns both scalar and vector features using geometric operators.

Contents

Installation

  1. Clone this repository:
git clone https://github.com/rubenwiersma/deltaconv.git
  1. Create a conda environment from the environment.yml:
conda env create -n deltaconv -f environment.yml

Done!

Manual installation

If you wish to install DeltaConv in your own environment, proceed as follows.

  1. Make sure that you have installed:

  2. Install DeltaConv:

pip install deltaconv

Building DeltaConv for yourself

  1. Make sure you clone the repository with submodules:
git clone --recurse-submodules https://github.com/rubenwiersma/deltaconv.git

If you have already cloned the repository without submodules, you can fix it with git submodule update --init --recursive.

  1. Install from folder:
cd [root_folder]
pip install

Replicating the experiments

See the README.md in replication_scripts for instructions on replicating the experiments and using the pre-trained weights (available in experiments/pretrained_weights).

In short, you can run bash scripts to replicate our experiments. For example, evaluating pre-trained weights on ShapeNet:

cd [root_folder]
conda activate deltaconv
bash replication_scripts/pretrained/shapenet.sh

You can also directly run the python files in experiments:

python experiments/train_shapenet.py

Use the -h or --help flag to find out which arguments can be passed to the training script:

python experiments/train_shapenet.py -h

You can keep track of the training process with tensorboard:

tensorboard logdir=experiments/runs/shapenet_all

Anisotropic Diffusion

The code that was used to generate Figure 2 from the paper and Figure 2 and 3 from the supplement is a notebook in the folder experiments/anisotropic_diffusion.

Data

The training scripts assume that you have a data folder in experiments. ModelNet40 and ShapeNet download the datasets from a public repository. Instructions to download the data for human body shape segmentation, SHREC, and ScanObjectNN are given in the training scripts.

Tests

In the paper, we make statements about a number of properties of DeltaConv that are either a result of prior work or due to the implementation. We created a test suite to ensure that these properties hold for the implementation, along with unit tests for each module. For example:

  • Section 3.6, 3.7: Vector MLPs are equivariant to norm-preserving transformations, or coordinate-independent (rotations, reflections)
    • test/nn/test_mlp.py
    • test/nn/test_nonlin.py
  • Section 3.7: DeltaConv is coordinate-independent, a forward pass on a shape with one choice of bases leads to the same output and weight updates when run with different bases
    • test/nn/test_deltaconv.py
  • Introduction, section 3.2: The operators are robust to noise and outliers.
    • test/geometry/test_grad_div.py
  • Supplement, section 1: Vectors can be mapped between points with equation (15).
    • test/geometry/test_grad_div.py

Citations

Please cite our paper if this code contributes to an academic publication:

@Article{Wiersma2022DeltaConv,
  author    = {Ruben Wiersma, Ahmad Nasikun, Elmar Eisemann, Klaus Hildebrandt},
  journal   = {Transactions on Graphics},
  title     = {DeltaConv: Anisotropic Operators for Geometric Deep Learning on Point Clouds},
  year      = {2022},
  month     = jul,
  number    = {4},
  volume    = {41},
  doi       = {10.1145/3528223.3530166},
  publisher = {ACM},
}

The farthest point sampling code relies on Geometry Central:

@misc{geometrycentral,
  title = {geometry-central},
  author = {Nicholas Sharp and Keenan Crane and others},
  note = {www.geometry-central.net},
  year = {2019}
}

And we make use of PyG (and underlying packages) to load point clouds, compute sparse matrix products, and compute nearest neighbors:

@inproceedings{Fey/Lenssen/2019,
  title={Fast Graph Representation Learning with {PyTorch Geometric}},
  author={Fey, Matthias and Lenssen, Jan E.},
  booktitle={ICLR Workshop on Representation Learning on Graphs and Manifolds},
  year={2019},
}
Pyramid Pooling Transformer for Scene Understanding

Pyramid Pooling Transformer for Scene Understanding Requirements: torch 1.6+ torchvision 0.7.0 timm==0.3.2 Validated on torch 1.6.0, torchvision 0.7.0

Yu-Huan Wu 119 Dec 29, 2022
Using CNN to mimic the driver based on training data from Torcs

Behavioural-Cloning-in-autonomous-driving Using CNN to mimic the driver based on training data from Torcs. Approach First, the data was collected from

Sudharshan 2 Jan 05, 2022
Voice Conversion by CycleGAN (语音克隆/语音转换):CycleGAN-VC3

CycleGAN-VC3-PyTorch 中文说明 | English This code is a PyTorch implementation for paper: CycleGAN-VC3: Examining and Improving CycleGAN-VCs for Mel-spectr

Kun Ma 110 Dec 24, 2022
Codes for building and training the neural network model described in Domain-informed neural networks for interaction localization within astroparticle experiments.

Domain-informed Neural Networks Codes for building and training the neural network model described in Domain-informed neural networks for interaction

DIDACTS 0 Dec 13, 2021
Python Actor concurrency library

Thespian Actor Library This library provides the framework of an Actor model for use by applications implementing Actors. Thespian Site with Documenta

Kevin Quick 177 Dec 11, 2022
Generalized and Efficient Blackbox Optimization System.

OpenBox Doc | OpenBox中文文档 OpenBox: Generalized and Efficient Blackbox Optimization System OpenBox is an efficient and generalized blackbox optimizatio

DAIR Lab 238 Dec 29, 2022
Official implementation for paper Knowledge Bridging for Empathetic Dialogue Generation (AAAI 2021).

Knowledge Bridging for Empathetic Dialogue Generation This is the official implementation for paper Knowledge Bridging for Empathetic Dialogue Generat

Qintong Li 50 Dec 20, 2022
Prompts - Read a textfile of prompts and import into anki via ankiconnect

prompts read a textfile of prompts and import into anki via ankiconnect Usage In

Alexander Cobleigh 2 Jul 28, 2022
A PyTorch library for Vision Transformers

VFormer A PyTorch library for Vision Transformers Getting Started Read the contributing guidelines in CONTRIBUTING.rst to learn how to start contribut

Society for Artificial Intelligence and Deep Learning 142 Nov 28, 2022
A command line simple note taking app

Why yet another note taking program? note was designed with a very specific target in mind: me, and my 2354 scraps of paper. It runs from the command

64 Nov 20, 2022
Count the MACs / FLOPs of your PyTorch model.

THOP: PyTorch-OpCounter How to install pip install thop (now continously intergrated on Github actions) OR pip install --upgrade git+https://github.co

Ligeng Zhu 3.9k Dec 29, 2022
Implementation of Neural Style Transfer in Pytorch

PytorchNeuralStyleTransfer Code to run Neural Style Transfer from our paper Image Style Transfer Using Convolutional Neural Networks. Also includes co

Leon Gatys 396 Dec 01, 2022
A embed able annotation tool for end to end cross document co-reference

CoRefi CoRefi is an emebedable web component and stand alone suite for exaughstive Within Document and Cross Document Coreference Anntoation. For a de

PythicCoder 39 Dec 12, 2022
Fast, modular reference implementation of Instance Segmentation and Object Detection algorithms in PyTorch.

Faster R-CNN and Mask R-CNN in PyTorch 1.0 maskrcnn-benchmark has been deprecated. Please see detectron2, which includes implementations for all model

Facebook Research 9k Jan 04, 2023
IOT: Instance-wise Layer Reordering for Transformer Structures

Introduction This repository contains the code for Instance-wise Ordered Transformer (IOT), which is introduced in the ICLR2021 paper IOT: Instance-wi

IOT 19 Nov 15, 2022
This repository contains all code and data for the Inside Out Visual Place Recognition task

Inside Out Visual Place Recognition This repository contains code and instructions to reproduce the results for the Inside Out Visual Place Recognitio

15 May 21, 2022
Stacked Generative Adversarial Networks

Stacked Generative Adversarial Networks This repository contains code for the paper "Stacked Generative Adversarial Networks", CVPR 2017. Part of the

Xun Huang 241 May 07, 2022
Pretrained SOTA Deep Learning models, callbacks and more for research and production with PyTorch Lightning and PyTorch

Pretrained SOTA Deep Learning models, callbacks and more for research and production with PyTorch Lightning and PyTorch

Pytorch Lightning 1.4k Jan 01, 2023
The official homepage of the COCO-Stuff dataset.

The COCO-Stuff dataset Holger Caesar, Jasper Uijlings, Vittorio Ferrari Welcome to official homepage of the COCO-Stuff [1] dataset. COCO-Stuff augment

Holger Caesar 715 Dec 31, 2022
Official implementation of Monocular Quasi-Dense 3D Object Tracking

Monocular Quasi-Dense 3D Object Tracking Monocular Quasi-Dense 3D Object Tracking (QD-3DT) is an online framework detects and tracks objects in 3D usi

Visual Intelligence and Systems Group 441 Dec 20, 2022