🔥 Cogitare - A Modern, Fast, and Modular Deep Learning and Machine Learning framework for Python

Overview

Cogitare is a Modern, Fast, and Modular Deep Learning and Machine Learning framework for Python. A friendly interface for beginners and a powerful toolset for experts.

Cogitare is built on top of PyTorch.

DocumentationTutorialsAboutInstallQuickstartContribution

PyPI version

1. About

It uses the best of PyTorch, Dask, NumPy, and others tools through a simple interface to train, to evaluate, to test models and more.

With Cogitare, you can use classical machine learning algorithms with high performance and develop state-of-the-art models quickly.

Check the tutorials at http://tutorials.cogitare-ai.org/

The primary objectives of Cogitare are:

  • provide an easy-to-use interface to train and evaluate models;
  • provide tools to debug and analyze the model;
  • provide implementations of state-of-the-art models (models for common tasks, ready to train and ready to use);
  • provide ready-to-use implementations of straightforward and classical models (such as LogisticRegression);
  • be compatible with models for a broad range of problems;
  • be compatible with other tools (scikit-learn, etcs);
  • keep growing with the community: accept as many new features as possible;
  • provide a friendly interface to beginners, and powerful features for experts;
  • take the best of the hardware through multi-processing and multi-threading;
  • and others.

Currently, it's a work in progress project that aims to provide a complete toolchain for machine learning and deep learning development, taking the best of cuda and multi-core processing.

2. Install

  • Install PyTorch from http://pytorch.org/

  • Install Cogitare from PIP:

    pip install cogitare
    
  • Cogitare is in active development, so it's recommended to get the latest version from GitHub. To install directly from GitHub, use:

    pip install -e git+https://github.com/cogitare-ai/cogitare#egg=cogitare
    

3. Quickstart

This is a simple tutorial to get started with Cogitare main functionalities.

In this tutorial, we will write a Convolutional Neural Network (CNN) to classify handwritten digits (MNIST).

3.1 Model

We start by defining our CNN model.

When developing a model with Cogitare, your model must extend the cogitare.Model class. This class provides the Model interface, which allows you to train and evaluate the model efficiently.

To implement a model, you must extend the cogitare.Model class and implement the forward() and loss() methods. The forward method will receive the batch. In this way, it is necessary to implement the forward pass through the network in this method, and then return the output of the net. The loss method will receive the output of the forward() and the batch received from the iterator, apply a loss function, compute and return it.

The Model interface will iterate over the dataset, and execute each batch on forward, loss, and backward.

# adapted from https://github.com/pytorch/examples/blob/master/mnist/main.py
from cogitare import Model
from cogitare import utils
from cogitare.data import DataSet, AsyncDataLoader
from cogitare.plugins import EarlyStopping
from cogitare.metrics.classification import accuracy
import cogitare

import torch.nn as nn
import torch
import torch.nn.functional as F
from torch.nn.utils import clip_grad_norm
import torch.optim as optim

from sklearn.datasets import fetch_mldata

import numpy as np

CUDA = True


cogitare.utils.set_cuda(CUDA)
class CNN(Model):
    
    def __init__(self):
        super(CNN, self).__init__()
        
        # define the model
        self.conv1 = nn.Conv2d(1, 10, kernel_size=5)
        self.conv2 = nn.Conv2d(10, 20, kernel_size=5)
        self.conv2_drop = nn.Dropout2d()
        self.fc1 = nn.Linear(320, 50)
        self.fc2 = nn.Linear(50, 10)
    
    def forward(self, batch):
        # in this sample, each batch will be a tuple containing (input_batch, expected_batch)
        # in forward in are only interested in input so that we can ignore the second item of the tuple
        input, _ = batch
        
        # batch X flat tensor -> batch X 1 channel (gray) X width X heigth
        input = input.view(32, 1, 28, 28)
        
        # pass the data in the net
        x = F.relu(F.max_pool2d(self.conv1(input), 2))
        x = F.relu(F.max_pool2d(self.conv2_drop(self.conv2(x)), 2))
        x = x.view(-1, 320)
        x = F.relu(self.fc1(x))
        x = F.dropout(x, training=self.training)
        x = self.fc2(x)

        # return the model output
        return F.log_softmax(x, dim=1)
    
    def loss(self, output, batch):
        # in this sample, each batch will be a tuple containing (input_batch, expected_batch)
        # in loss in are only interested in expected so that we can ignore the first item of the tuple
        _, expected = batch
        
        return F.nll_loss(output, expected)

The model class is simple; it only requires de forward and loss methods. By default, Cogitare will backward the loss returned by the loss() method, and optimize the model parameters. If you want to disable the Cogitare backward and optimization steps, just return None in the loss function. If you return None, you are responsible by backwarding and optimizing the parameters.

3.2 Data Loading

In this step, we will load the data from sklearn package.

mnist = fetch_mldata('MNIST original')
mnist.data = (mnist.data / 255).astype(np.float32)

Cogitare provides a toolbox to load and pre-process data for your models. In this introduction, we will use the DataSet and the AsyncDataLoader as examples.

The DataSet is responsible by iterating over multiples data iterators (in our case, we'll have two data iterators: input samples, expected samples).

# as input, the DataSet is expected a list of iterators. In our case, the first iterator is the input 
# data and the second iterator is the target data

# also, we set the batch size to 32 and enable the shuffling

# drop the last batch if its size is different of 32
data = DataSet([mnist.data, mnist.target.astype(int)], batch_size=32, shuffle=True, drop_last=True)

# then, we split our dataset into a train and into a validation sets, by a ratio of 0.8
data_train, data_validation = data.split(0.8)

Notice that Cogitare accepts any iterator as input. Instead of using our DataSet, you can use the mnist.data itself, PyTorch's data loaders, or any other input that acts as an iterator.

In some cases, we can increase the model performance by loading the data using multiples threads/processes or by pre-loading the data before being requested by the model.

With the AsyncDataLoader, we can load N batches ahead of the model execution in parallel. We present this technique in this sample because it can increase performance in a wide range of models (when the data loading or pre-processing is slower than the model execution).

def pre_process(batch):
    input, expected = batch
    
    # the data is a numpy.ndarray (loaded from sklearn), so we need to convert it to Variable
    input = utils.to_variable(input, dtype=torch.FloatTensor)  # converts to a torch Variable of LongTensor
    expected = utils.to_variable(expected, dtype=torch.LongTensor)  # converts to a torch Variable of LongTensor
    return input, expected


# we wrap our data_train and data_validation iterators over the async data loader.
# each loader will load 16 batches ahead of the model execution using 8 workers (8 threads, in this case).
# for each batch, it will be pre-processed in parallel with the preprocess function, that will load the data
# on GPU
data_train = AsyncDataLoader(data_train, buffer_size=16, mode='threaded', workers=8, on_batch_loaded=pre_process)
data_validation = AsyncDataLoader(data_validation, buffer_size=16, mode='threaded', workers=8, on_batch_loaded=pre_process)

to cache the async buffer before training, we can:

data_train.cache()
data_validation.cache()

3.3 Training

Now, we can train our model.

First, lets create the model instance and add the default plugins to watch the training status. The default plugin includes:

  • Progress bar per batch and epoch
  • Plot training and validation losses (if validation_dataset is present)
  • Log training loss
model = CNN()
model.register_default_plugins()

Besides that, we may want to add some extra plugins, such as the EarlyStopping. So, if the model is not decreasing the loss after N epochs, the training stops and the best model is used.

To add the early stopping algorithm, you can use:

early = EarlyStopping(max_tries=10, path='/tmp/model.pt')
# after 10 epochs without decreasing the loss, stop the training and the best model is saved at /tmp/model.pt

# the plugin will execute in the end of each epoch
model.register_plugin(early, 'on_end_epoch')

Also, a common technique is to clip the gradient during training. If you want to clip the grad, you can use:

model.register_plugin(lambda *args, **kw: clip_grad_norm(model.parameters(), 1.0), 'before_step')
# will execute the clip_grad_norm before each optimization step

Now, we define the optimizator, and then start the model training:

optimizer = optim.Adam(model.parameters(), lr=0.001)

if CUDA:
    model = model.cuda()
model.learn(data_train, optimizer, data_validation, max_epochs=100)
2018-02-02 20:59:23 sprawl cogitare.core.model[2443] INFO Model: 

CNN(
  (conv1): Conv2d (1, 10, kernel_size=(5, 5), stride=(1, 1))
  (conv2): Conv2d (10, 20, kernel_size=(5, 5), stride=(1, 1))
  (conv2_drop): Dropout2d(p=0.5)
  (fc1): Linear(in_features=320, out_features=50)
  (fc2): Linear(in_features=50, out_features=10)
)

2018-02-02 20:59:23 sprawl cogitare.core.model[2443] INFO Training data: 

DataSet with:
    containers: [
        TensorHolder with 1750x32 samples
	TensorHolder with 1750x32 samples
    ],
    batch size: 32


2018-02-02 20:59:23 sprawl cogitare.core.model[2443] INFO Number of trainable parameters: 21,840
2018-02-02 20:59:23 sprawl cogitare.core.model[2443] INFO Number of non-trainable parameters: 0
2018-02-02 20:59:23 sprawl cogitare.core.model[2443] INFO Total number of parameters: 21,840
2018-02-02 20:59:23 sprawl cogitare.core.model[2443] INFO Starting the training ...
2018-02-02 21:02:04 sprawl cogitare.core.model[2443] INFO Training finished

Stopping training after 10 tries. Best score 0.0909
Model restored from: /tmp/model.pt

To check the model loss and accuracy on the validation dataset:

def model_accuracy(output, data):
    _, indices = torch.max(output, 1)
    
    return accuracy(indices, data[1])

# evaluate the model loss and accuracy over the validation dataset
metrics = model.evaluate_with_metrics(data_validation, {'loss': model.metric_loss, 'accuracy': model_accuracy})

# the metrics is an dict mapping the metric name (loss or accuracy, in this sample) to a list of the accuracy output
# we have a measurement per batch. So, to have a value of the full dataset, we take the mean value:

metrics_mean = {'loss': 0, 'accuracy': 0}
for loss, acc in zip(metrics['loss'], metrics['accuracy']):
    metrics_mean['loss'] += loss
    metrics_mean['accuracy'] += acc.item()

qtd = len(metrics['loss'])

print('Loss: {}'.format(metrics_mean['loss'] / qtd))
print('Accuracy: {}'.format(metrics_mean['accuracy'] / qtd))
Loss: 0.10143917564566948
Accuracy: 0.9846252860411899

One of the advantages of Cogitare is the plug-and-play APIs, which let you add/remove functionalities easily. With this sample, we trained a model with training progress bar, error plotting, early stopping, grad clipping, and model evaluation easily.

4. Contribution

Cogitare is a work in progress project, and any contribution is welcome.

You can contribute testing and providing bug reports, proposing feature ideas, fixing bugs, pushing code, etcs.

  1. You want to propose a new Feature and implement it
    • post about your intended feature, and we shall discuss the design and implementation. Once we agree that the plan looks good, go ahead and implement it.
  2. You want to implement a feature or bug-fix for an outstanding issue
    • Look at the outstanding issues here: https://github.com/cogitare-ai/cogitare/issues
    • Pick an issue and comment on the task that you want to work on this feature
    • If you need more context on a particular issue, please ask and we shall provide.

Once you finish implementing a feature or bugfix, please send a Pull Request to https://github.com/cogitare-ai/cogitare

If you are not familiar with creating a Pull Request, here are some guides:

Comments
  • [Feature request] Plugin to watch the training on web (tensorboard integrated with cogitare plugins)

    [Feature request] Plugin to watch the training on web (tensorboard integrated with cogitare plugins)

    • plot training error\std
    • plot validation error\std
    • time remaining
    • button to stop the training process
    • button to save the model at the current step
    • button to pause the training
    • button to resume the training
    • plot model parameters statistics
    • save/load model execution log, to compare and analyze different executions [1]
    • plot execution graph
    • maybe something like named-scope from tensorflow [2]
    • x-axis: by value or by relative time [3]
    • plot smothing
    • display real-time execution machine/gpu stats
    • add Hyper-parameter option to modify its value from the web interface

    [1] screenshot from 2017-10-31 17-04-09

    [2] screenshot from 2017-10-31 17-13-13

    [3] screenshot from 2017-10-31 17-52-29

    enhancement hard 
    opened by aron-bordin 1
  • [Feature Request] Implement History plugin

    [Feature Request] Implement History plugin

    A plugin that records all (or a fraction, if given a filter) of variables during the training process.

    It watches all hooks, capture the variables, and then can be exported.

    • be compatible with the Cogitare Monitor, implementing a history viewer.
    enhancement medium 
    opened by aron-bordin 0
  • [Feature Request] Add map parameter to dataholders

    [Feature Request] Add map parameter to dataholders

    A callable parameter, that can act over the sample before generating the batch.

    It should allow easy-to-use preprocessing algorithms through a distributed interface (threads, processes, machines)

    Add on dataholder:

    • on_sample_loaded
    • on_batch_loaded

    Add on asyncloader:

    • on_batch_loaded (useful for loading batches to gpu before using)
    enhancement 
    opened by aron-bordin 0
  • before first release, profile everything to make mem/speed improvements

    before first release, profile everything to make mem/speed improvements

    Logs.

    18/09 - replaced python indices by numpy indices and python shuffle by numpy shuffle in dataholder. In a dataset with millions of samples, improved by ~15x.

    enhancement 
    opened by aron-bordin 0
  • [Feature Request] add utils.auto_optim

    [Feature Request] add utils.auto_optim

    add a simple function on utils, which receives the optimizer name, the model parameters, and its arguments. This function will create the optimizer and return it.

    (if testing multiples optimizers, it's not required to change the code to change an optimizer. you can, for example, use an argument named "optim" and just pass this argument to the function)

    enhancement help wanted easy 
    opened by aron-bordin 0
  • [Feature Request] Implement Interactive SIGINT Interrupt

    [Feature Request] Implement Interactive SIGINT Interrupt

    A plugin that listens SIGINT signal during training.

    When receiving the signal, gives some options to the interactive user:

    • save/load the model state
    • quit training
    • maybe something else
    enhancement help wanted easy 
    opened by aron-bordin 0
Releases(v0.1.0)
  • v0.1.0(Feb 3, 2018)

    The first release of Cogitare.

    Support:

    • Model

    • Sequential Model

    • DataHolder

    • Sequential DataHolder

    • DataSet

    • Sequential DataSet

    • AsyncDataLoader

    • Metrics (classification, spatial)

    • Classic Models (LR, MLP)

    • Web Monitor (system usage, system details)

    • Early stopping plugin

    • Evaluator plugin (different test metrics on the model)

    • Logger

    • Plotting (matplotlib)

    • Progress Bars

    • Some utilities

    • Documentation with examples

    • Tests: 92% of coverage (8% remaining is of the Monitor undefined interface)

    Source code(tar.gz)
    Source code(zip)
Owner
Cogitare - Modern and Easy Deep Learning with Python
A modern, fast, and modular deep learning and machine learning framework for Python
Cogitare - Modern and Easy Deep Learning with Python
Tensorflow Implementation of the paper "Spectral Normalization for Generative Adversarial Networks" (ICML 2017 workshop)

tf-SNDCGAN Tensorflow implementation of the paper "Spectral Normalization for Generative Adversarial Networks" (https://www.researchgate.net/publicati

Nhat M. Nguyen 248 Nov 25, 2022
Supplementary materials to "Spin-optomechanical quantum interface enabled by an ultrasmall mechanical and optical mode volume cavity" by H. Raniwala, S. Krastanov, M. Eichenfield, and D. R. Englund, 2022

Supplementary materials to "Spin-optomechanical quantum interface enabled by an ultrasmall mechanical and optical mode volume cavity" by H. Raniwala,

Stefan Krastanov 1 Jan 17, 2022
Anti-UAV base on PaddleDetection

Paddle-Anti-UAV Anti-UAV base on PaddleDetection Background UAVs are very popular and we can see them in many public spaces, such as parks and playgro

Qingzhong Wang 2 Apr 20, 2022
Planning from Pixels in Environments with Combinatorially Hard Search Spaces -- NeurIPS 2021

PPGS: Planning from Pixels in Environments with Combinatorially Hard Search Spaces Environment Setup We recommend pipenv for creating and managing vir

Autonomous Learning Group 11 Jun 26, 2022
这是一个mobilenet-yolov4-lite的库,把yolov4主干网络修改成了mobilenet,修改了Panet的卷积组成,使参数量大幅度缩小。

YOLOV4:You Only Look Once目标检测模型-修改mobilenet系列主干网络-在Keras当中的实现 2021年2月8日更新: 加入letterbox_image的选项,关闭letterbox_image后网络的map一般可以得到提升。

Bubbliiiing 65 Dec 01, 2022
EvDistill: Asynchronous Events to End-task Learning via Bidirectional Reconstruction-guided Cross-modal Knowledge Distillation (CVPR'21)

EvDistill: Asynchronous Events to End-task Learning via Bidirectional Reconstruction-guided Cross-modal Knowledge Distillation (CVPR'21) Citation If y

addisonwang 18 Nov 11, 2022
Weakly Supervised 3D Object Detection from Point Cloud with Only Image Level Annotation

SCCKTIM Weakly Supervised 3D Object Detection from Point Cloud with Only Image-Level Annotation Our code will be available soon. The class knowledge t

1 Nov 12, 2021
Ascend your Jupyter Notebook usage

Jupyter Ascending Sync Jupyter Notebooks from any editor About Jupyter Ascending lets you edit Jupyter notebooks from your favorite editor, then insta

Untitled AI 254 Jan 08, 2023
Unsupervised MRI Reconstruction via Zero-Shot Learned Adversarial Transformers

Official TensorFlow implementation of the unsupervised reconstruction model using zero-Shot Learned Adversarial TransformERs (SLATER). (https://arxiv.

ICON Lab 22 Dec 22, 2022
An implementation of "Learning human behaviors from motion capture by adversarial imitation"

Merel-MoCap-GAIL An implementation of Merel et al.'s paper on generative adversarial imitation learning (GAIL) using motion capture (MoCap) data: Lear

Yu-Wei Chao 34 Nov 12, 2022
TensorFlow 2 implementation of the Yahoo Open-NSFW model

TensorFlow 2 implementation of the Yahoo Open-NSFW model

Bosco Yung 101 Jan 01, 2023
PyoMyo - Python Opensource Myo library

PyoMyo Python module for the Thalmic Labs Myo armband. Cross platform and multithreaded and works without the Myo SDK. pip install pyomyo Documentati

PerlinWarp 81 Jan 08, 2023
Twin-deep neural network for semi-supervised learning of materials properties

Deep Semi-Supervised Teacher-Student Material Synthesizability Prediction Citation: Semi-supervised teacher-student deep neural network for materials

MLEG 3 Dec 14, 2022
Jupyter notebooks for using & learning Keras

deep-learning-with-keras-notebooks 這個github的repository主要是個人在學習Keras的一些記錄及練習。希望在學習過程中發現到一些好的資訊與範例也可以對想要學習使用 Keras來解決問題的同好,或是對深度學習有興趣的在學學生可以有一些方便理解與上手範例

ErhWen Kuo 2.1k Dec 27, 2022
A clean implementation based on AlphaZero for any game in any framework + tutorial + Othello/Gobang/TicTacToe/Connect4 and more

Alpha Zero General (any game, any framework!) A simplified, highly flexible, commented and (hopefully) easy to understand implementation of self-play

Surag Nair 3.1k Jan 05, 2023
Code for "LoRA: Low-Rank Adaptation of Large Language Models"

LoRA: Low-Rank Adaptation of Large Language Models This repo contains the implementation of LoRA in GPT-2 and steps to replicate the results in our re

Microsoft 394 Jan 08, 2023
Read Like Humans: Autonomous, Bidirectional and Iterative Language Modeling for Scene Text Recognition

Read Like Humans: Autonomous, Bidirectional and Iterative Language Modeling for Scene Text Recognition The official code of ABINet (CVPR 2021, Oral).

334 Dec 31, 2022
A PyTorch implementation of "Capsule Graph Neural Network" (ICLR 2019).

CapsGNN ⠀⠀ A PyTorch implementation of Capsule Graph Neural Network (ICLR 2019). Abstract The high-quality node embeddings learned from the Graph Neur

Benedek Rozemberczki 1.2k Jan 02, 2023
PyGCL: A PyTorch Library for Graph Contrastive Learning

PyGCL is a PyTorch-based open-source Graph Contrastive Learning (GCL) library, which features modularized GCL components from published papers, standa

PyGCL 588 Dec 31, 2022