Keyword2Text This repository contains the code of the paper: "A Plug-and-Play Method for Controlled Text Generation"

Related tags

Deep LearningK2T
Overview

Keyword2Text

This repository contains the code of the paper: "A Plug-and-Play Method for Controlled Text Generation", if you find this useful and use it for your own research, please cite us.

Setup

  1. Download and unzip the repository.
  2. Create a new conda environment and install the required libraries from the requirements.txt file.
conda create -n k2t python=3.6
conda activate k2t
pip install -r requirements.txt

A GPU will be required to run the experiments. Make sure you have a results folder.

Run Model

Hyperparameter Study

Uncomment the appropriate lines of run.sh to run the hyperparameter experiments from the paper. For example,

python main.py -mode='next' -file_name=/data/50_keywordsets_eval/word_sets.txt -results_subfolder=guide_vs_no_guide_beams -weight=10.0 -top_p=0.9 -n_generated_sentences=90 -do_guarantee=True

runs K2T with ordered guide words (mode='next') on the random keywords dataset. It runs with lambda=weight=10, nucleus sampling with top-p=0.9, number of generated tokens = 90, and no weight annealing to guarantee word appearance. The results are saved in results/tmp

ROC Story dataset

Uncomment the appropriate line of run.sh to run the model on the ROC story dataset:

python main.py -mode='max' -file_name=/data/ROC/ROCStories_20_storylines_500_0.txt -results_subfolder=final4_ -weight=5.0 -top_p=0.9 -n_generated_sentences=-7 -n_beams=4 -do_guarantee=True -task='ROC'

News Article dataset

Uncomment the appropriate line of run.sh to run the model on the News Article story dataset:

python main_DBS.py -mode='max' -file_name=/data/keyword_to_articles -results_subfolder=tmp -weight=5.0 -top_p=0.9 -n_generated_sentences=-15 -n_beams=4 -do_guarantee=True -task='key2article'

Contents

├── data
│   ├── 50_keywordsets_eval
│   │   └── word_sets.txt
│   ├── keyword_to_articles
│   │   ├── test_10.txt
│   │   ├── test_12.txt
│   │   ├── test_13.txt
│   │   ├── test_14.txt
│   │   ├── test_15.txt
│   │   ├── test_16.txt
│   │   ├── test_4.txt
│   │   ├── test_5.txt
│   │   ├── test_8.txt
│   │   └── test_9.txt
│   └── ROC
│       └── ROCStories_20_storylines_500_0.txt
├── encode_keywords.py
├── encode_keywords_word2vec.py
├── main.py
├── metrics_degen.py
├── metrics_degen_run.sh
├── perplexity.py
├── README.md
├── requirements.txt
├── results
├── run.sh
└── utility_gpt.py


Finite-temperature variational Monte Carlo calculation of uniform electron gas using neural canonical transformation.

CoulombGas This code implements the neural canonical transformation approach to the thermodynamic properties of uniform electron gas. Building on JAX,

FermiFlow 9 Mar 03, 2022
QueryFuzz implements a metamorphic testing approach to test Datalog engines.

Datalog is a popular query language with applications in several domains. Like any complex piece of software, Datalog engines may contain bugs. The mo

34 Sep 10, 2022
Public implementation of the Convolutional Motif Kernel Network (CMKN) architecture

CMKN Implementation of the convolutional motif kernel network (CMKN) introduced in Ditz et al., "Convolutional Motif Kernel Network", 2021. Testing Yo

1 Nov 17, 2021
Diagnostic tests for linguistic capacities in language models

LM diagnostics This repository contains the diagnostic datasets and experimental code for What BERT is not: Lessons from a new suite of psycholinguist

61 Jan 02, 2023
A real-time speech emotion recognition application using Scikit-learn and gradio

Speech-Emotion-Recognition-App A real-time speech emotion recognition application using Scikit-learn and gradio. Requirements librosa==0.6.3 numpy sou

Son Tran 6 Oct 04, 2022
DeepLab-ResNet rebuilt in TensorFlow

DeepLab-ResNet-TensorFlow This is an (re-)implementation of DeepLab-ResNet in TensorFlow for semantic image segmentation on the PASCAL VOC dataset. Fr

Vladimir 1.2k Nov 04, 2022
Dynamic Token Normalization Improves Vision Transformers

Dynamic Token Normalization Improves Vision Transformers This is the PyTorch implementation of the paper Dynamic Token Normalization Improves Vision T

Wenqi Shao 20 Oct 09, 2022
[NeurIPS 2021] Better Safe Than Sorry: Preventing Delusive Adversaries with Adversarial Training

Better Safe Than Sorry: Preventing Delusive Adversaries with Adversarial Training Code for NeurIPS 2021 paper "Better Safe Than Sorry: Preventing Delu

Lue Tao 29 Sep 20, 2022
Code for Massive-scale Decoding for Text Generation using Lattices

Massive-scale Decoding for Text Generation using Lattices Jiacheng Xu, Greg Durrett TL;DR: a new search algorithm to construct lattices encoding many

Jiacheng Xu 37 Dec 18, 2022
ICNet for Real-Time Semantic Segmentation on High-Resolution Images, ECCV2018

ICNet for Real-Time Semantic Segmentation on High-Resolution Images by Hengshuang Zhao, Xiaojuan Qi, Xiaoyong Shen, Jianping Shi, Jiaya Jia, details a

Hengshuang Zhao 594 Dec 31, 2022
A mini-course offered to Undergrad chemistry students

The best way to use this material is by forking it by click the Fork button at the top, right corner. Then you will get your own copy to play with! Th

Raghu 19 Dec 19, 2022
ReferFormer - Official Implementation of ReferFormer

The official implementation of the paper: Language as Queries for Referring Vide

Jonas Wu 232 Dec 29, 2022
A PyTorch Implementation of Single Shot Scale-invariant Face Detector.

S³FD: Single Shot Scale-invariant Face Detector A PyTorch Implementation of Single Shot Scale-invariant Face Detector. Eval python wider_eval_pytorch.

carwin 235 Jan 07, 2023
RoIAlign & crop_and_resize for PyTorch

RoIAlign for PyTorch This is a PyTorch version of RoIAlign. This implementation is based on crop_and_resize and supports both forward and backward on

Long Chen 530 Jan 07, 2023
This is the official pytorch implementation for our ICCV 2021 paper "TRAR: Routing the Attention Spans in Transformers for Visual Question Answering" on VQA Task

🌈 ERASOR (RA-L'21 with ICRA Option) Official page of "ERASOR: Egocentric Ratio of Pseudo Occupancy-based Dynamic Object Removal for Static 3D Point C

Hyungtae Lim 225 Dec 29, 2022
Change Detection in SAR Images Based on Multiscale Capsule Network

SAR_CD_MS_CapsNet Code for the paper "Change Detection in SAR Images Based on Multiscale Capsule Network" , IEEE Geoscience and Remote Sensing Letters

Feng Gao 21 Nov 29, 2022
Official Implementation of "DialogLM: Pre-trained Model for Long Dialogue Understanding and Summarization."

DialogLM Code for AAAI 2022 paper: DialogLM: Pre-trained Model for Long Dialogue Understanding and Summarization. Pre-trained Models We release two ve

Microsoft 92 Dec 19, 2022
We present a framework for training multi-modal deep learning models on unlabelled video data by forcing the network to learn invariances to transformations applied to both the audio and video streams.

Multi-Modal Self-Supervision using GDT and StiCa This is an official pytorch implementation of papers: Multi-modal Self-Supervision from Generalized D

Facebook Research 42 Dec 09, 2022
KSAI Lite is a deep learning inference framework of kingsoft, based on tensorflow lite

KSAI Lite is a deep learning inference framework of kingsoft, based on tensorflow lite

80 Dec 27, 2022
basic tutorial on pytorch

Quick Tutorial on PyTorch PyTorch Basics Linear Regression Logistic Regression Artificial Neural Networks Convolutional Neural Networks Recurrent Neur

7 Sep 15, 2022