A Tensorflow implementation of the Text Conditioned Auxiliary Classifier Generative Adversarial Network for Generating Images from text descriptions

Overview

TAC-GAN

This is the official Tensorflow implementation of TAC-GAN model presented in https://arxiv.org/abs/1703.06412.

Text Conditioned Auxiliary Classifier Generative Adversarial Network, (TAC-GAN) is a text to image Generative Adversarial Network (GAN) for synthesizing images from their text descriptions. TAC-GAN builds upon the AC-GAN by conditioning the generated images on a text description instead of on a class label. In the presented TAC-GAN model, the input vector of the Generative network is built based on a noise vector and another vector containing an embedded representation of the textual description. While the Discriminator is similar to that of the AC-GAN, it is also augmented to receive the text information as input before performing its classification.

For embedding the textual descriptions of the images into vectors we used skip-thought vectors

The following is the architecture of the TAC-GAN model

Prerequisites

Some important dependencies are the following and the rest can be installed using the requirements.txt

  1. Python 3.5
  2. Tensorflow 1.2.0
  3. Theano 0.9.0 : for skip thought vectors
  4. scikit-learn : for skip thought vectors
  5. NLTK 3.2.1 : for skip thought vectors

It is recommended to use a virtual environment for running this project and installing the required dependencies in it by using the requirements.txt file.

The project has been tested on a Ubuntu 14.04 machine with an 12 GB NVIDIA Titen X GPU

1. Setup and Run

1.1. Clone the Repository

git clone https://github.com/dashayushman/TAC-GAN.git
cd TAC-GAN

1.2. Download the Dataset

The model presented in the paper was trained on the flowers dataset. This To train the TAC-GAN on the flowers dataset, first, download the dataset by doing the following,

  1. Download the flower images from here. Extract the 102flowers.tgz file and copy the extracted jpg folder to Data/datasets/flowers

  2. Download the captions from here. Extract the downloaded file, copy the text_c10 folder and paste it in Data/datasets/flowers directory

  3. Download the pretrained skip-thought vectors model from here and copy the downloaded files to Data/skipthoughts

NB: It is recommended to keep all the images in an SSD if available. This makes the batch loading and processing operation faster.

1.3. Data Preprocessing

Extract the skip-thought features for the captions and prepare the dataset for training by running the following script

python dataprep.py --data_dir=Data --dataset=flowers

This script will create a set of pickled files in the datet directory which will be used during training. The following are the available flags for data preparation:

FLAG VALUE TYPE DEFAULT VALUE DESCRIPTION
data_dir str Data The data directory
dataset str flowers Dataset to use. For Eg., "flowers"

1.4. Training

To train TAC-GAN with the default hyper parameters run the following script

python train.py --dataset="flowers" --model_name=TAC-GAN

While training, you can montor samples generated by the model in the Data/training/TAC_GAN/samples directory. Notice that a directory is created according to the "model_name" taht you provide. This directory contains all the data related to a particular experiment. This can also be considered as an "experiment name" too.

The following flags can be set to change the hyperparameters of the network.

FLAG VALUE TYPE DEFAULT VALUE DESCRIPTION
z-dim int 100 Number of dimensions of the Noise vector
t_dim int 256 Number of dimensions for the latent representation of the text embedding.
batch_size int 64 Mini-Batch Size
image_size int 128 Batch size to use during training.
gf_dim int 64 Number of conv filters in the first layer of the generator.
df_dim int 64 Number of conv filters in the first layer of the discriminator.
caption_vector_length int 4800 Length of the caption vector embedding (vector generated using skip-thought vectors model).
n_classes int 102 Number of classes
data_dir String Data Data directory
learning_rate float 0.0002 Learning rate
beta1 float 0.5 Momentum for Adam Update
epochs int 200 Maximum number of epochs to train
save_every int 30 Save model and samples after this many number.of iterations
resume_model Boolean False To Load the pre-trained model
data_set String flowers Which dataset to use: "flowers"
model_name String model_1 Name of the model: Can be anything
train bool True This is True while training and false otherwise. Used for batch normalization

We used the following script (hyper-parameters) in for the results that we show in our paper

python train.py --t_dim=100 --image_size=128 --data_set=flowers --model_name=TAC_GAN --train=True --resume_model=True --z_dim=100 --n_classes=102 --epochs=400 --save_every=20 --caption_vector_length=4800 --batch_size=128

1.5. Monitoring

While training, you can monitor the updates on the terminal as well as by using tensorboard

1.5.1 The Terminal:

Terminal log

1.5.1 Tensorboard:

You can use the following script to start tensorboard and visualize realtime changes:

tensorboard --logdir=Data/training/TAC_GAN/summaries

Tensorboard

2. Generating Images for the text in the dataset

Once you have trained the model for certain epochs you can generate images for all the text descriptions in the dataset use the following script. This will create a synthetic dataset with images generated by the generator.

python train.py --data_set=flowers --epochs=100 --output_dir=Data/synthetic_dataset --checkpoints_dir=Data/training/TAC_GAN/checkpoints

Notice that the checkpoints directory is ls created automatically created inside the model directory after you run the training script.

This script will create the following directory structure:

Data
  |__synthetic_dataset
        |___ds
             |___train
             |___val

the train directory will contain all the images generated from the text descriptions of the images in the training set and the same goes for the val directory.

3. Generating Images from any Text

To generate images from any text, do the following

3.1 Add Text Descriptions:

Write your text descriptions in a file or use the example file Data/text.txt that we have provided in the Data directory. The text description file should contain one text description per line. For example,

a flower with red petals which are pointed
many pointed petals
A yellow flower

3.2 Extract Skip-Thought Vectors:

Run the following script for extracting the Skip-Thought vectors for the text descriptions

python encode_text.py --caption_file=Data/text.txt --data_dir=Data

This script will create a pickle file called Data/enc_text.pkl with features extracted from the text descriptions.

3.3 Generate Images:

To generate images for the text descriptions, run the following script,

python generate_images.py --data_set=flowers --checkpoints_dir=Data/training/TAC_GAN/checkpoints --images_per_caption=30 --data_dir=Data

This will create a directory Data/images_generated_from_text/ with a folder corresponding to every row of the text.txt file. Each of these folders will contain images for that text.

The following are the parameters you need to set, in case you have used different parameters for training the model.

FLAG VALUE TYPE DEFAULT VALUE DESCRIPTION
z-dim int 100 Number of dimensions of the Noise vector
t_dim int 256 Number of dimensions for the latent representation of the text embedding.
batch_size int 64 Mini-Batch Size
image_size int 128 Batch size to use during training.
gf_dim int 64 Number of conv filters in the first layer of the generator.
df_dim int 64 Number of conv filters in the first layer of the discriminator.
caption_vector_length int 4800 Length of the caption vector embedding (vector generated using skip-thought vectors model).
n_classes int 102 Number of classes
data_dir String Data Data directory
learning_rate float 0.0002 Learning rate
beta1 float 0.5 Momentum for Adam Update
images_per_caption int 30 Maximum number of images that you want to generate for each of the text descriptions
data_set String flowers Which dataset to use: "flowers"
checkpoints_dir String /tmp Path to the checkpoints directory which will be used to generate the images

4. Evaluation

We have used two metrics for evaluating TAC-GAN,

  1. Inception-Scope
  2. MS-SSIM score

The links are from where we adapted the code for evaluating TAC-GAN. Before evaluating the model, generate a synthetic dataset by referring to Section 6

4.1 Inception Score

To calculate the inception score, use the following script,

python inception_score.py --output_dir=Data/synthetic_dataset --data_dir=Data --n_images=30000 --image_size=128

This will create a collection of all the generated images in Data/synthetic_dataset/ds_inception and show the inception score on the terminal.

The following are the set of available parameters/flags

FLAG VALUE TYPE DEFAULT VALUE DESCRIPTION
output_dir str Data/ds_inception Directory to dump all the images for calculating the inception score
data_dir str Data/synthetic_dataset/ds The root directory of the synthetic dataset
n_images int 30000 Number of images to consider for calculating inception score
image_size int 128 Size of the image to consider for calculating inception score

4.2 MS-SSIM

To calculate the MS-SSIM score, use the following script,

python inception_score.py --output_dir=Data --data_dir=Data --dataset=flowers --syn_dataset_dir=Data/synthetic_datset/ds

This will create a Data/msssim.tsv tab separated file. The data in this file is structured as follows


     
       
     

     
    
   

Once you have generated the msssim.tsv file, you can use the following script to generate a figure to compare the MS-SSIM score of the images in the real dataset with the images in the synthetic dataset belonging to the same class,

python utility/plot_msssim.py --input_file=Data/msssim.tsv --output_file=Data/msssim

This will create Data/msssim.pdf, which is the .pdf file of the generated figure.

5. Generate Interpolated Images

In our paper we show the effect of interpolating the noise and the text embedding vectors on the generated image. Images are randomply selected and their text descriptions are used to generate synthetic images. The following sub-sections will elaborate on how to do it and which scripts will help you in doing it.

5.1 Z (Noise) Interpolation

For interpolating the noise vector and generating images, use the following scripts

python z_interpolation.py --output_dir=Data/synthetic_dataset --data_set=flowers --checkpoints_dir=Data/training/TAC_GAN/checkpoints --n_images=500

This will generate the interpolated images in Data/synthetic_dataset/z_interpolation/.

5.1 T (Text Embedding) Interpolation

For interpolating the text embedding vectors and generating images, use the following scripts

python t_interpolation.py --output_dir=Data/synthetic_dataset --data_set=flowers --checkpoints_dir=Data/training/TAC_GAN/checkpoints --n_images=500

This will generate the interpolated images in Data/synthetic_dataset/t_interpolation/.

NOTE: Both the above mentioned scripts have the same flags/arguments, which are the following,

FLAG VALUE TYPE DEFAULT VALUE DESCRIPTION
z-dim int 100 Number of dimensions of the Noise vector
t_dim int 256 Number of dimensions for the latent representation of the text embedding.
batch_size int 64 Mini-Batch Size
image_size int 128 Batch size to use during training.
gf_dim int 64 Number of conv filters in the first layer of the generator.
df_dim int 64 Number of conv filters in the first layer of the discriminator.
caption_vector_length int 4800 Length of the caption vector embedding (vector generated using skip-thought vectors model).
n_classes int 102 Number of classes
data_dir String Data Data directory
learning_rate float 0.0002 Learning rate
beta1 float 0.5 Momentum for Adam Update
data_set str flowers The dataset to use: "flowers"
output_dir String Data/synthetic_dataset The directory in which the t_interpolated images will be generated
checkpoints_dir String /tmp Path to the checkpoints directory which will be used to generate the images
n_interp int 100 The factor difference between each interpolation (Should ideally be a multiple of 10)
n_images int 500 Number of images to randomply sample for generating interpolation results

6. References

TAC-GAN

If you find this code usefull, then please use the following BibTex to cite our work.

@article{dash2017tac,
  title={TAC-GAN-Text Conditioned Auxiliary Classifier Generative Adversarial Network},
  author={Dash, Ayushman and Gamboa, John Cristian Borges and Ahmed, Sheraz and Afzal, Muhammad Zeshan and Liwicki, Marcus},
  journal={arXiv preprint arXiv:1703.06412},
  year={2017}
}

Oxford-102 Flowers Dataset

If you use the Oxford-102 Flowers Dataset, then please cite their work using the following BibTex.

@InProceedings{Nilsback08,
   author = "Nilsback, M-E. and Zisserman, A.",
   title = "Automated Flower Classification over a Large Number of Classes",
   booktitle = "Proceedings of the Indian Conference on Computer Vision, Graphics and Image Processing",
   year = "2008",
   month = "Dec"
}

Skip-Thought

If you use the Skip-Thought model in your work like us, then please cite their work using the following BibTex

@article{kiros2015skip,
  title={Skip-Thought Vectors},
  author={Kiros, Ryan and Zhu, Yukun and Salakhutdinov, Ruslan and Zemel, Richard S and Torralba, Antonio and Urtasun, Raquel and Fidler, Sanja},
  journal={arXiv preprint arXiv:1506.06726},
  year={2015}
}

Code

We have referred to the text-to-image and DCGAN-tensorflow repositories for developing our code, and we are extremely thankful to them.

Owner
Ayushman Dash
I am a research scientist, musician and composer. I have an affinity towards Machine Learning, Deep Neural Networks and I wish to add more to the community.
Ayushman Dash
一个目标检测的通用框架(不需要cuda编译),支持Yolo全系列(v2~v5)、EfficientDet、RetinaNet、Cascade-RCNN等SOTA网络。

一个目标检测的通用框架(不需要cuda编译),支持Yolo全系列(v2~v5)、EfficientDet、RetinaNet、Cascade-RCNN等SOTA网络。

Haoyu Xu 203 Jan 03, 2023
Pytorch implementation of our method for regularizing nerual radiance fields for few-shot neural volume rendering.

InfoNeRF: Ray Entropy Minimization for Few-Shot Neural Volume Rendering Pytorch implementation of our method for regularizing nerual radiance fields f

106 Jan 06, 2023
Code for the ICML 2021 paper: "ViLT: Vision-and-Language Transformer Without Convolution or Region Supervision"

ViLT Code for the paper: "ViLT: Vision-and-Language Transformer Without Convolution or Region Supervision" Install pip install -r requirements.txt pip

Wonjae Kim 922 Jan 01, 2023
MT-GAN-PyTorch - PyTorch Implementation of Learning to Transfer: Unsupervised Domain Translation via Meta-Learning

MT-GAN-PyTorch PyTorch Implementation of AAAI-2020 Paper "Learning to Transfer: Unsupervised Domain Translation via Meta-Learning" Dependency: Python

29 Oct 19, 2022
Galaxy images labelled by morphology (shape). Aimed at ML development and teaching

Galaxy images labelled by morphology (shape). Aimed at ML debugging and teaching.

Mike Walmsley 14 Nov 28, 2022
A python toolbox for predictive uncertainty quantification, calibration, metrics, and visualization

Website, Tutorials, and Docs    Uncertainty Toolbox A python toolbox for predictive uncertainty quantification, calibration, metrics, and visualizatio

Uncertainty Toolbox 1.4k Dec 28, 2022
TeST: Temporal-Stable Thresholding for Semi-supervised Learning

TeST: Temporal-Stable Thresholding for Semi-supervised Learning TeST Illustration Semi-supervised learning (SSL) offers an effective method for large-

Xiong Weiyu 1 Jul 14, 2022
This repo contains the code for paper Inverse Weighted Survival Games

Inverse-Weighted-Survival-Games This repo contains the code for paper Inverse Weighted Survival Games instructions general loss function (--lfn) can b

3 Jan 12, 2022
AI Face Mesh: This is a simple face mesh detection program based on Artificial intelligence.

AI Face Mesh: This is a simple face mesh detection program based on Artificial Intelligence which made with Python. It's able to detect 468 different

Md. Rakibul Islam 1 Jan 13, 2022
🛰️ Awesome Satellite Imagery Datasets

Awesome Satellite Imagery Datasets List of aerial and satellite imagery datasets with annotations for computer vision and deep learning. Newest datase

Christoph Rieke 3k Jan 03, 2023
USAD - UnSupervised Anomaly Detection on multivariate time series

USAD - UnSupervised Anomaly Detection on multivariate time series Scripts and utility programs for implementing the USAD architecture. Implementation

116 Jan 04, 2023
Graph Posterior Network: Bayesian Predictive Uncertainty for Node Classification (NeurIPS 2021)

Graph Posterior Network This is the official code repository to the paper Graph Posterior Network: Bayesian Predictive Uncertainty for Node Classifica

Maximilian Stadler 30 Dec 05, 2022
Pervasive Attention: 2D Convolutional Networks for Sequence-to-Sequence Prediction

This is a fork of Fairseq(-py) with implementations of the following models: Pervasive Attention - 2D Convolutional Neural Networks for Sequence-to-Se

Maha 490 Dec 15, 2022
[ICLR2021oral] Rethinking Architecture Selection in Differentiable NAS

DARTS-PT Code accompanying the paper ICLR'2021: Rethinking Architecture Selection in Differentiable NAS Ruochen Wang, Minhao Cheng, Xiangning Chen, Xi

Ruochen Wang 86 Dec 27, 2022
PyTorch Implementation of SSTNs for hyperspectral image classifications from the IEEE T-GRS paper "Spectral-Spatial Transformer Network for Hyperspectral Image Classification: A FAS Framework."

PyTorch Implementation of SSTN for Hyperspectral Image Classification Paper links: SSTN published on IEEE T-GRS. Also, you can directly find the imple

Zilong Zhong 54 Dec 19, 2022
An end-to-end library for editing and rendering motion of 3D characters with deep learning [SIGGRAPH 2020]

Deep-motion-editing This library provides fundamental and advanced functions to work with 3D character animation in deep learning with Pytorch. The co

1.2k Dec 29, 2022
Pytorch implementation of the paper Time-series Generative Adversarial Networks

TimeGAN-pytorch Pytorch implementation of the paper Time-series Generative Adversarial Networks presented at NeurIPS'19. Jinsung Yoon, Daniel Jarrett

Zhiwei ZHANG 21 Nov 24, 2022
The easiest way to use deep metric learning in your application. Modular, flexible, and extensible. Written in PyTorch.

News December 27: v1.1.0 New loss functions: CentroidTripletLoss and VICRegLoss Mean reciprocal rank + per-class accuracies See the release notes Than

Kevin Musgrave 5k Jan 05, 2023
Pytorch code for "DPFM: Deep Partial Functional Maps" - 3DV 2021 (Oral)

DPFM Code for "DPFM: Deep Partial Functional Maps" - 3DV 2021 (Oral) Installation This implementation runs on python = 3.7, use pip to install depend

Souhaib Attaiki 29 Oct 03, 2022
NVIDIA Deep Learning Examples for Tensor Cores

NVIDIA Deep Learning Examples for Tensor Cores Introduction This repository provides State-of-the-Art Deep Learning examples that are easy to train an

NVIDIA Corporation 10k Dec 31, 2022