Galaxy images labelled by morphology (shape). Aimed at ML development and teaching

Overview

GalaxyMNIST

Galaxy images labelled by morphology (shape). Aimed at ML debugging and teaching.

Contains 10,000 images of galaxies (3x64x64), confidently labelled by Galaxy Zoo volunteers as belonging to one of four morphology classes.

Installation

git clone https://github.com/mwalmsley/galaxy_mnist
pip install -e galaxy_mnist

The only dependencies are pandas, scikit-learn, and h5py (for .hdf5 support). (py)torch is required but not specified as a dependency, because you likely already have it and may require a very specific version (e.g. from conda, AWS-optimised, etc).

Use

Simply use as with MNIST:

from galaxy_mnist import GalaxyMNIST

dataset = GalaxyMNIST(
    root='/some/download/folder',
    download=True,
    train=True  # by default, or set False for test set
)

Access the images and labels - in a fixed "canonical" 80/20 train/test division - like so:

images, labels = dataset.data, dataset.targets

You can also divide the data according to your own to your own preferences with load_custom_data:

(custom_train_images, custom_train_labels), (custom_test_images, custom_test_labels) = dataset.load_custom_data(test_size=0.8, stratify=True) 

See load_in_pytorch.py for a working example.

Dataset Details

GalaxyMNIST has four classes: smooth and round, smooth and cigar-shaped, edge-on-disk, and unbarred spiral (you can retrieve this as a list with GalaxyMNIST.classes).

The galaxies are selected from Galaxy Zoo DECaLS Campaign A (GZD-A), which classified images taken by DECaLS and released in DR1 and 2. The images are as shown to volunteers on Galaxy Zoo, except for a 75% crop followed by a resize to 64x64 pixels.

At least 17 people must have been asked the necessary questions, and at least half of them must have answered with the given class. The class labels are therefore much more confident than from, for example, simply labelling with the most common answer to some question.

The classes are balanced exactly equally across the whole dataset (2500 galaxies per class), but only approximately equally (by random sampling) in the canonical train/test split. For a split with exactly equal classes on both sides, use load_custom_data with stratify=True.

You can see the exact choices made to select the galaxies and labels under the reproduce folder. This includes the notebook exploring and selecting choices for pruning the decision tree, and the script for saving the final dataset(s).

Citations and Further Reading

If you use this dataset, please cite Galaxy Zoo DECaLS, the data release paper from which the labels are drawn. Please also acknowledge the DECaLS survey (see the linked paper for an example).

You can find the original volunteer votes (and images) on Zenodo here.

Owner
Mike Walmsley
Mike Walmsley
An Implementation of Fully Convolutional Networks in Tensorflow.

Update An example on how to integrate this code into your own semantic segmentation pipeline can be found in my KittiSeg project repository. tensorflo

Marvin Teichmann 1.1k Dec 12, 2022
Time Series Cross-Validation -- an extension for scikit-learn

TSCV: Time Series Cross-Validation This repository is a scikit-learn extension for time series cross-validation. It introduces gaps between the traini

Wenjie Zheng 222 Jan 01, 2023
Official implementation of EdiTTS: Score-based Editing for Controllable Text-to-Speech

EdiTTS: Score-based Editing for Controllable Text-to-Speech Official implementation of EdiTTS: Score-based Editing for Controllable Text-to-Speech. Au

Neosapience 98 Dec 25, 2022
Source Code for DialogBERT: Discourse-Aware Response Generation via Learning to Recover and Rank Utterances (https://arxiv.org/pdf/2012.01775.pdf)

DialogBERT This is a PyTorch implementation of the DialogBERT model described in DialogBERT: Neural Response Generation via Hierarchical BERT with Dis

Xiaodong Gu 67 Jan 06, 2023
Code and Data for NeurIPS2021 Paper "A Dataset for Answering Time-Sensitive Questions"

Time-Sensitive-QA The repo contains the dataset and code for NeurIPS2021 (dataset track) paper Time-Sensitive Question Answering dataset. The dataset

wenhu chen 35 Nov 14, 2022
Relative Human dataset, CVPR 2022

Relative Human (RH) contains multi-person in-the-wild RGB images with rich human annotations, including: Depth layers (DLs): relative depth relationsh

Yu Sun 112 Dec 02, 2022
Deep Inside Convolutional Networks - This is a caffe implementation to visualize the learnt model

Deep Inside Convolutional Networks This is a caffe implementation to visualize the learnt model. Part of a class project at Georgia Tech Problem State

Jigar 61 Apr 15, 2022
Split your patch similarly to `git add -p` but supporting multiple buckets

split-patch.py This is git add -p on steroids for patches. Given a my.patch you can run ./split-patch.py my.patch You can choose in which bucket to p

102 Oct 06, 2022
Think Big, Teach Small: Do Language Models Distil Occam’s Razor?

Think Big, Teach Small: Do Language Models Distil Occam’s Razor? Software related to the paper "Think Big, Teach Small: Do Language Models Distil Occa

0 Dec 07, 2021
PyTorch Implement of Context Encoders: Feature Learning by Inpainting

Context Encoders: Feature Learning by Inpainting This is the Pytorch implement of CVPR 2016 paper on Context Encoders 1) Semantic Inpainting Demo Inst

321 Dec 25, 2022
Code to compute permutation and drop-column importances in Python scikit-learn models

Feature importances for scikit-learn machine learning models By Terence Parr and Kerem Turgutlu. See Explained.ai for more stuff. The scikit-learn Ran

Terence Parr 537 Dec 31, 2022
“英特尔创新大师杯”深度学习挑战赛 赛道3:CCKS2021中文NLP地址相关性任务

基于 bert4keras 的一个baseline 不作任何 数据trick 单模 线上 最高可到 0.7891 # 基础 版 train.py 0.7769 # transformer 各层 cls concat 明神的trick https://xv44586.git

孙永松 7 Dec 28, 2021
This is a repository for a Semantic Segmentation inference API using the Gluoncv CV toolkit

BMW Semantic Segmentation GPU/CPU Inference API This is a repository for a Semantic Segmentation inference API using the Gluoncv CV toolkit. The train

BMW TechOffice MUNICH 56 Nov 24, 2022
Deep Image Matting implementation in PyTorch

Deep Image Matting Deep Image Matting paper implementation in PyTorch. Differences "fc6" is dropped. Indices pooling. "fc6" is clumpy, over 100 millio

Yang Liu 724 Dec 27, 2022
Web service for facial landmark detection, head pose estimation, facial action unit recognition, and eye-gaze estimation based on OpenFace 2.0

OpenGaze: Web Service for OpenFace Facial Behaviour Analysis Toolkit Overview OpenFace is a fantastic tool intended for computer vision and machine le

Sayom Shakib 4 Nov 03, 2022
Systemic Evolutionary Chemical Space Exploration for Drug Discovery

SECSE SECSE: Systemic Evolutionary Chemical Space Explorer Chemical space exploration is a major task of the hit-finding process during the pursuit of

64 Dec 16, 2022
Background Matting: The World is Your Green Screen

Background Matting: The World is Your Green Screen By Soumyadip Sengupta, Vivek Jayaram, Brian Curless, Steve Seitz, and Ira Kemelmacher-Shlizerman Th

Soumyadip Sengupta 4.6k Jan 04, 2023
Experiments and code to generate the GINC small-scale in-context learning dataset from "An Explanation for In-context Learning as Implicit Bayesian Inference"

GINC small-scale in-context learning dataset GINC (Generative In-Context learning Dataset) is a small-scale synthetic dataset for studying in-context

P-Lambda 29 Dec 19, 2022
Classic Papers for Beginners and Impact Scope for Authors.

There have been billions of academic papers around the world. However, maybe only 0.0...01% among them are valuable or are worth reading. Since our limited life has never been forever, TopPaper provi

Qiulin Zhang 228 Dec 18, 2022
PySOT - SenseTime Research platform for single object tracking, implementing algorithms like SiamRPN and SiamMask.

PySOT is a software system designed by SenseTime Video Intelligence Research team. It implements state-of-the-art single object tracking algorit

STVIR 4.1k Dec 29, 2022