Using Language Model to Bootstrap Human Activity Recognition Ambient Sensors Based in Smart Homes

Overview

Using Language Model to Bootstrap Human Activity Recognition Ambient Sensors Based in Smart Homes

This repository is the official implementation of Using Language Model to Bootstrap Human Activity Recognition Ambient Sensors Based in Smart Homes.

Requirements

To install requirements:

To use this repository you should download and install SmartHomeHARLib package

git clone [email protected]:dbouchabou/SmartHomeHARLib.git
pip install -r requirements.txt
cd SmartHomeHARLib
python setup.py develop

Embeddings Training

To train Embedding model(s) of the paper, run this command:

To train a Word2Vec model on a dataset, run this command:

python Word2vecEmbeddingExperimentations.py --d cairo

To train a ELMo model on a dataset, run this command:

python ELMoEmbeddingExperimentations.py --d cairo

Activity Sequences Classification Training And Evaluation

To train Classifier(s) model(s) of the paper, run this command:

python PretrainEmbeddingExperimentations.py --d cairo --e bi_lstm --c config/no_embedding_bi_lstm.json
python PretrainEmbeddingExperimentations.py --d cairo --e liciotti_bi_lstm --c config/liciotti_bi_lstm.json
python PretrainEmbeddingExperimentations.py --d cairo --e w2v_bi_lstm --c config/cairo_bi_lstm_w2v.json
python PretrainEmbeddingExperimentations.py --d cairo --e elmo_bi_lstm --c config/cairo_bi_lstm_elmo_concat.json

Results

Our model achieves the following performance on :

Three CASAS datasets

Aruba Aruba Aruba Aruba Milan Milan Milan Milan Cairo Cairo Cairo Cairo
No Embedding Liciotti W2V ELMo No Embedding Liciotti W2V ELMo No Embedding Liciotti W2V ELMo
Accuracy 95.01 96.52 96.59 96.76 82.24 90.54 88.33 90.14 81.68 84.99 82.27 90.12
Precision 94.69 96.11 96.23 96.43 82.28 90.08 88.28 90.20 80.22 83.17 82.04 88.41
Recall 95.01 96.50 96.59 96.69 82.24 90.45 88.33 90.31 81.68 82.98 82.27 87.59
F1 score 94.74 96.22 96.32 96.42 81.97 90.02 87.98 90.10 80.49 82.18 81.14 87.48
Balance Accuracy 77.73 79.96 81.06 79.98 67.77 74.31 73.61 78.25 70.09 77.52 69.38 87.00
Weighted Precision 79.75 82.30 82.97 88.64 79.6 82.03 84.42 87.56 68.45 80.03 77.56 86.83
Weighted Recall 77.73 80.71 81.06 79.17 67.77 75.51 73.62 78.75 70.09 73.82 69.38 84.78
Weighted F1 score 77.92 81.21 81.43 82.93 71.81 77.74 76.59 82.26 68.47 74.84 70.95 84.71
Owner
Damien Bouchabou
PhD Candidate in Machine Learning and Human Activities Recognition
Damien Bouchabou
Lightweight plotting to the terminal. 4x resolution via Unicode.

Uniplot Lightweight plotting to the terminal. 4x resolution via Unicode. When working with production data science code it can be handy to have plotti

Olav Stetter 203 Dec 29, 2022
Vector AI — A platform for building vector based applications. Encode, query and analyse data using vectors.

Vector AI is a framework designed to make the process of building production grade vector based applications as quickly and easily as possible. Create

Vector AI 267 Dec 23, 2022
Change is Everywhere: Single-Temporal Supervised Object Change Detection in Remote Sensing Imagery (ICCV 2021)

Change is Everywhere Single-Temporal Supervised Object Change Detection in Remote Sensing Imagery by Zhuo Zheng, Ailong Ma, Liangpei Zhang and Yanfei

Zhuo Zheng 125 Dec 13, 2022
Text-to-Music Retrieval using Pre-defined/Data-driven Emotion Embeddings

Text2Music Emotion Embedding Text-to-Music Retrieval using Pre-defined/Data-driven Emotion Embeddings Reference Emotion Embedding Spaces for Matching

Minz Won 50 Dec 05, 2022
Official PyTorch Implementation of Mask-aware IoU and maYOLACT Detector [BMVC2021]

The official implementation of Mask-aware IoU and maYOLACT detector. Our implementation is based on mmdetection. Mask-aware IoU for Anchor Assignment

Kemal Oksuz 46 Sep 29, 2022
Unified unsupervised and semi-supervised domain adaptation network for cross-scenario face anti-spoofing, Pattern Recognition

USDAN The implementation of Unified unsupervised and semi-supervised domain adaptation network for cross-scenario face anti-spoofing, which is accepte

11 Nov 03, 2022
Implementation of Neonatal Seizure Detection using EEG signals for deploying on edge devices including Raspberry Pi.

NeonatalSeizureDetection Description Link: https://arxiv.org/abs/2111.15569 Citation: @misc{nagarajan2021scalable, title={Scalable Machine Learn

Vishal Nagarajan 11 Nov 08, 2022
Performant, differentiable reinforcement learning

deluca Performant, differentiable reinforcement learning Notes This is pre-alpha software and is undergoing a number of core changes. Updates to follo

Google 114 Dec 27, 2022
Official repository of IMPROVING DEEP IMAGE MATTING VIA LOCAL SMOOTHNESS ASSUMPTION.

IMPROVING DEEP IMAGE MATTING VIA LOCAL SMOOTHNESS ASSUMPTION This is the official repository of IMPROVING DEEP IMAGE MATTING VIA LOCAL SMOOTHNESS ASSU

电线杆 14 Dec 15, 2022
A flexible and extensible framework for gait recognition.

A flexible and extensible framework for gait recognition. You can focus on designing your own models and comparing with state-of-the-arts easily with the help of OpenGait.

Shiqi Yu 335 Dec 22, 2022
Official Implementation of HRDA: Context-Aware High-Resolution Domain-Adaptive Semantic Segmentation

HRDA: Context-Aware High-Resolution Domain-Adaptive Semantic Segmentation by Lukas Hoyer, Dengxin Dai, and Luc Van Gool [Arxiv] [Paper] Overview Unsup

Lukas Hoyer 149 Dec 28, 2022
LibFewShot: A Comprehensive Library for Few-shot Learning.

LibFewShot Make few-shot learning easy. Supported Methods Meta MAML(ICML'17) ANIL(ICLR'20) R2D2(ICLR'19) Versa(NeurIPS'18) LEO(ICLR'19) MTL(CVPR'19) M

<a href=[email protected]&L"> 603 Jan 05, 2023
The code for "Deep Level Set for Box-supervised Instance Segmentation in Aerial Images".

Deep Levelset for Box-supervised Instance Segmentation in Aerial Images Wentong Li, Yijie Chen, Wenyu Liu, Jianke Zhu* This code is based on MMdetecti

sunshine.lwt 112 Jan 05, 2023
RIFE: Real-Time Intermediate Flow Estimation for Video Frame Interpolation

RIFE - Real Time Video Interpolation arXiv | YouTube | Colab | Tutorial | Demo Table of Contents Introduction Collection Usage Evaluation Training and

hzwer 3k Jan 04, 2023
CONetV2: Efficient Auto-Channel Size Optimization for CNNs

CONetV2: Efficient Auto-Channel Size Optimization for CNNs Exciting News! CONetV2: Efficient Auto-Channel Size Optimization for CNNs has been accepted

Mahdi S. Hosseini 3 Dec 13, 2021
CrossMLP - The repository offers the official implementation of our BMVC 2021 paper (oral) in PyTorch.

CrossMLP Cascaded Cross MLP-Mixer GANs for Cross-View Image Translation Bin Ren1, Hao Tang2, Nicu Sebe1. 1University of Trento, Italy, 2ETH, Switzerla

Bingoren 16 Jul 27, 2022
The Official Implementation of the ICCV-2021 Paper: Semantically Coherent Out-of-Distribution Detection.

SCOOD-UDG (ICCV 2021) This repository is the official implementation of the paper: Semantically Coherent Out-of-Distribution Detection Jingkang Yang,

Jake YANG 62 Nov 21, 2022
MixText: Linguistically-Informed Interpolation of Hidden Space for Semi-Supervised Text Classification

MixText This repo contains codes for the following paper: Jiaao Chen, Zichao Yang, Diyi Yang: MixText: Linguistically-Informed Interpolation of Hidden

GT-SALT 309 Dec 12, 2022
A note taker for NVDA. Allows the user to create, edit, view, manage and export notes to different formats.

Quick Notetaker add-on for NVDA The Quick Notetaker add-on is a wonderful tool which allows writing notes quickly and easily anytime and from any app

5 Dec 06, 2022
Code for the preprint "Well-classified Examples are Underestimated in Classification with Deep Neural Networks"

This is a repository for the paper of "Well-classified Examples are Underestimated in Classification with Deep Neural Networks" The implementation and

LancoPKU 25 Dec 11, 2022