Code for Efficient Visual Pretraining with Contrastive Detection

Related tags

Deep Learningdetcon
Overview

Code for DetCon

This repository contains code for the ICCV 2021 paper "Efficient Visual Pretraining with Contrastive Detection" by Olivier J. Hénaff, Skanda Koppula, Jean-Baptiste Alayrac, Aaron van den Oord, Oriol Vinyals, João Carreira.

This repository includes sample code to run pretraining with DetCon. In particular, we're providing a sample script for generating the Felzenzwalb segmentations for ImageNet images (using skimage) and a pre-training experiment setup (dataloader, augmentation pipeline, optimization config, and loss definition) that describes the DetCon-B(YOL) model described in the paper. The original code uses a large grid of TPUs and internal infrastructure for training, but we've extracted the key DetCon loss+experiment in this folder so that external groups can have a reference should they want to explore a similar approaches.

This repository builds heavily from the BYOL open source release, so speed-up tricks and features in that setup may likely translate to the code here.

Running this code

Running ./setup.sh will create and activate a virtualenv and install all necessary dependencies. To enter the environment after running setup.sh, run source /tmp/detcon_venv/bin/activate.

Running bash test.sh will run a single training step on a mock image/Felzenszwalb mask as a simple validation that all dependencies are set up correctly and the DetCon pre-training can run smoothly. On our 16-core machine, running on CPU, we find this takes around 3-4 minutes.

A TFRecord dataset containing each ImageNet image, label, and its corresponding Felzenszwalb segmentation/mask can then be generated using the generate_fh_masks Python script. You will first have to download two pieces of ImageNet metadata into the same directory as the script:

wget https://raw.githubusercontent.com/tensorflow/models/master/research/slim/datasets/imagenet_metadata.txt wget https://raw.githubusercontent.com/tensorflow/models/master/research/slim/datasets/imagenet_lsvrc_2015_synsets.txt

And to run the multi-threaded mask generation script:

python generate_fh_masks_for_imagenet.py -- \
--train_directory=imagenet-train \
--output_directory=imagenet-train-fh

This single-machine, multi-threaded version of the mask generation script takes 2-3 days on a 16-core CPU machine to complete CPU-based processing of the ImageNet training and validation set. The script assumes the same ImageNet directory structure as github.com/tensorflow/models/blob/master/research/slim/datasets/build_imagenet_data.py (more details in the link).

You can then run the main training loop and execute multiple DetCon-B training steps by running from the parent directory the command:

python -m detcon.main_loop \
  --dataset_directory='/tmp/imagenet-fh-train' \
  --pretrain_epochs=100`

Note that you will need to update the dataset_directory flag, to point to the generated Felzenzwalb/image TFRecord dataset previously generated. Additionally, to use accelerators, users will need to install the correct version of jaxlib with CUDA support.

Citing this work

If you use this code in your work, please consider referencing our work:

@article{henaff2021efficient,
  title={{Efficient Visual Pretraining with Contrastive Detection}},
  author={H{\'e}naff, Olivier J and Koppula, Skanda and Alayrac, Jean-Baptiste and Oord, Aaron van den and Vinyals, Oriol and Carreira, Jo{\~a}o},
  journal={International Conference on Computer Vision},
  year={2021}
}

Disclaimer

This is not an officially supported Google product.

Owner
DeepMind
DeepMind
Code for ACM MM 2020 paper "NOH-NMS: Improving Pedestrian Detection by Nearby Objects Hallucination"

NOH-NMS: Improving Pedestrian Detection by Nearby Objects Hallucination The offical implementation for the "NOH-NMS: Improving Pedestrian Detection by

Tencent YouTu Research 64 Nov 11, 2022
Computing Shapley values using VAEAC

Shapley values and the VAEAC method In this GitHub repository, we present the implementation of the VAEAC approach from our paper "Using Shapley Value

3 Nov 23, 2022
Official Chainer implementation of GP-GAN: Towards Realistic High-Resolution Image Blending (ACMMM 2019, oral)

GP-GAN: Towards Realistic High-Resolution Image Blending (ACMMM 2019, oral) [Project] [Paper] [Demo] [Related Work: A2RL (for Auto Image Cropping)] [C

Wu Huikai 402 Dec 27, 2022
Fog Simulation on Real LiDAR Point Clouds for 3D Object Detection in Adverse Weather

LiDAR fog simulation Created by Martin Hahner at the Computer Vision Lab of ETH Zurich. This is the official code release of the paper Fog Simulation

Martin Hahner 110 Dec 30, 2022
Tensorflow implementation of Character-Aware Neural Language Models.

Character-Aware Neural Language Models Tensorflow implementation of Character-Aware Neural Language Models. The original code of author can be found h

Taehoon Kim 751 Dec 26, 2022
Depth-Aware Video Frame Interpolation (CVPR 2019)

DAIN (Depth-Aware Video Frame Interpolation) Project | Paper Wenbo Bao, Wei-Sheng Lai, Chao Ma, Xiaoyun Zhang, Zhiyong Gao, and Ming-Hsuan Yang IEEE C

Wenbo Bao 7.7k Dec 31, 2022
Supplementary code for the paper "Meta-Solver for Neural Ordinary Differential Equations" https://arxiv.org/abs/2103.08561

Meta-Solver for Neural Ordinary Differential Equations Towards robust neural ODEs using parametrized solvers. Main idea Each Runge-Kutta (RK) solver w

Julia Gusak 25 Aug 12, 2021
The official implementation of the research paper "DAG Amendment for Inverse Control of Parametric Shapes"

DAG Amendment for Inverse Control of Parametric Shapes This repository is the official Blender implementation of the paper "DAG Amendment for Inverse

Elie Michel 157 Dec 26, 2022
An educational resource to help anyone learn deep reinforcement learning.

Status: Maintenance (expect bug fixes and minor updates) Welcome to Spinning Up in Deep RL! This is an educational resource produced by OpenAI that ma

OpenAI 7.6k Jan 09, 2023
Advantage Actor Critic (A2C): jax + flax implementation

Advantage Actor Critic (A2C): jax + flax implementation Current version supports only environments with continious action spaces and was tested on muj

Andrey 3 Jan 23, 2022
This is an example of a reproducible modelling project

An example of a reproducible modelling project What are we doing? This example was created for the 2021 fall lecture series of Stanford's Center for O

Armin Thomas 2 Oct 26, 2021
Controlling the MicriSpotAI robot from scratch

Project-MicroSpot-AI Controlling the MicriSpotAI robot from scratch Colaborators Alexander Dennis Components from MicroSpot The MicriSpotAI has the fo

Dennis Núñez-Fernández 5 Oct 20, 2022
Pytorch implementation of forward and inverse Haar Wavelets 2D

Pytorch implementation of forward and inverse Haar Wavelets 2D

Sergei Belousov 9 Oct 30, 2022
[ICML 2021] Towards Understanding and Mitigating Social Biases in Language Models

Towards Understanding and Mitigating Social Biases in Language Models This repo contains code and data for evaluating and mitigating bias from generat

Paul Liang 42 Jan 03, 2023
Awesome Monocular 3D detection

Awesome Monocular 3D detection Paper list of 3D detetction, keep updating! Contents Paper List 2022 2021 2020 2019 2018 2017 2016 KITTI Results Paper

Zhikang Zou 184 Jan 04, 2023
Management Dashboard for Torchserve

Torchserve Dashboard Torchserve Dashboard using Streamlit Related blog post Usage Additional Requirement: torchserve (recommended:v0.5.2) Simply run:

Ceyda Cinarel 103 Dec 10, 2022
Pomodoro timer that acknowledges the inexorable, infinite passage of time

Pomodouroboros Most pomodoro trackers assume you're going to start them. But time and tide wait for no one - the great pomodoro of the cosmos is cold

Glyph 66 Dec 13, 2022
Code for Graph-to-Tree Learning for Solving Math Word Problems (ACL 2020)

Graph-to-Tree Learning for Solving Math Word Problems PyTorch implementation of Graph based Math Word Problem solver described in our ACL 2020 paper G

Jipeng Zhang 66 Nov 23, 2022
Reinforcement learning for self-driving in a 3D simulation

SelfDrive_AI Reinforcement learning for self-driving in a 3D simulation (Created using UNITY-3D) 1. Requirements for the SelfDrive_AI Gym You need Pyt

Surajit Saikia 17 Dec 14, 2021