Learning Versatile Neural Architectures by Propagating Network Codes

Related tags

Deep LearningNCP
Overview

Learning Versatile Neural Architectures by Propagating Network Codes

Mingyu Ding, Yuqi Huo, Haoyu Lu, Linjie Yang, Zhe Wang, Zhiwu Lu, Jingdong Wang, Ping Luo

diagram

Introduction

This work includes:
(1) NAS-Bench-MR, a NAS benchmark built on four challenging datasets under practical training settings for learning task-transferable architectures.
(2) An efficient predictor-based algorithm Network Coding Propagation (NCP), which back-propagates the gradients of neural predictors to directly update architecture codes along desired gradient directions for various objectives.

This framework is implemented and tested with Ubuntu/Mac OS, CUDA 9.0/10.0, Python 3, Pytorch 1.3-1.6, NVIDIA Tesla V100/CPU.

Dataset

We build our benchmark on four computer vision tasks, i.e., image classification (ImageNet), semantic segmentation (CityScapes), 3D detection (KITTI), and video recognition (HMDB51). Totally 9 different settings are included, as shown in the data/*/trainval.pkl folders.

Note that each .pkl file contains more than 2500 architectures, and their corresponding evaluation results under multiple metrics. The original training logs and checkpoints (including model weights and optimizer data) will be uploaded to Google drive (more than 4T). We will share the download link once the upload is complete.

Quick start

First, train the predictor

python3 tools/train_predictor.py  # --cfg configs/seg.yaml

Then, edit architecture based on desired gradients

python3 tools/ncp.py  # --cfg configs/seg.yaml

Examples

  • An example in NAS-Bench-MR (Seg):
{'mIoU': 70.57,
 'mAcc': 80.07,
 'aAcc': 95.29,
 'input_channel': [16, 64],
 # [num_branches, [num_convs], [num_channels]]
 'network_setting': [[1, [3], [128]],
  [2, [3, 3], [32, 48]],
  [2, [3, 3], [32, 48]],
  [2, [3, 3], [32, 48]],
  [3, [2, 3, 2], [16, 32, 16]],
  [3, [2, 3, 2], [16, 32, 16]],
  [4, [2, 4, 1, 1], [96, 112, 48, 80]]],
 'last_channel': 112,
 # [num_branches, num_block1, num_convs1, num_channels1, ..., num_block4, num_convs4, num_channels4, last_channel]
 'embedding': [16, 64, 1, 3, 128, 3, 3, 3, 32, 48, 2, 2, 3, 2, 16, 32, 16, 1, 2, 4, 1, 1, 96, 112, 48, 80]
}
  • Load Datasets:
import pickle
exps = pickle.load(open('data/seg/trainval.pkl', 'rb'))
# Then process each item in exps
  • Load Model / Get Params and Flops (based on the thop library):
import torch
from thop import profile
from models.supernet import MultiResolutionNet

# Get model using input_channel & network_setting & last_channel
model = MultiResolutionNet(input_channel=[16, 64],
                           network_setting=[[1, [3], [128]],
                            [2, [3, 3], [32, 48]],
                            [2, [3, 3], [32, 48]],
                            [2, [3, 3], [32, 48]],
                            [3, [2, 3, 2], [16, 32, 16]],
                            [3, [2, 3, 2], [16, 32, 16]],
                            [4, [2, 4, 1, 1], [96, 112, 48, 80]]],
                          last_channel=112)

# Get Flops and Parameters
input = torch.randn(1, 3, 224, 224)
macs, params = profile(model, inputs=(input, ))  

structure

Data Format

Each code in data/search_list.txt denotes an architecture. It can be load in our supernet as follows:

  • Code2Setting
params = '96_128-1_1_1_48-1_2_1_1_128_8-1_3_1_1_1_128_128_120-4_4_4_4_4_4_128_128_128_128-64'
embedding = [int(item) for item in params.replace('-', '_').split('_')]

embedding = [ 96, 128,   1,   1,  48,   1,   1,   1, 128,   8,   1,   1,
           1,   1, 128, 128, 120,   4,   4,   4,   4,   4, 128, 128,
         128, 128, 64]
input_channels = embedding[0:2]
block_1 = embedding[2:3] + [1] + embedding[3:5]
block_2 = embedding[5:6] + [2] + embedding[6:10]
block_3 = embedding[10:11] + [3] + embedding[11:17]
block_4 = embedding[17:18] + [4] + embedding[18:26]
last_channels = embedding[26:27]
network_setting = []
for item in [block_1, block_2, block_3, block_4]:
    for _ in range(item[0]):
        network_setting.append([item[1], item[2:-int(len(item) / 2 - 1)], item[-int(len(item) / 2 - 1):]])

# network_setting = [[1, [1], [48]], 
#  [2, [1, 1], [128, 8]],
#  [3, [1, 1, 1], [128, 128, 120]], 
#  [4, [4, 4, 4, 4], [128, 128, 128, 128]], 
#  [4, [4, 4, 4, 4], [128, 128, 128, 128]], 
#  [4, [4, 4, 4, 4], [128, 128, 128, 128]], 
#  [4, [4, 4, 4, 4], [128, 128, 128, 128]]]
# input_channels = [96, 128]
# last_channels = [64]
  • Setting2Code
input_channels = [str(item) for item in input_channels]
block_1 = [str(item) for item in block_1]
block_2 = [str(item) for item in block_2]
block_3 = [str(item) for item in block_3]
block_4 = [str(item) for item in block_4]
last_channels = [str(item) for item in last_channels]

params = [input_channels, block_1, block_2, block_3, block_4, last_channels]
params = ['_'.join(item) for item in params]
params = '-'.join(params)
# params
# 96_128-1_1_1_48-1_2_1_1_128_8-1_3_1_1_1_128_128_120-4_4_4_4_4_4_128_128_128_128-64'

License

For academic use, this project is licensed under the 2-clause BSD License. For commercial use, please contact the author.

Owner
Mingyu Ding
Mingyu Ding
JupyterNotebook - C/C++, Javascript, HTML, LaTex, Shell scripts in Jupyter Notebook Also run them on remote computer

JupyterNotebook Read, write and execute C, C++, Javascript, Shell scripts, HTML, LaTex in jupyter notebook, And also execute them on remote computer R

1 Jan 09, 2022
This repository contains notebook implementations of the following Neural Process variants: Conditional Neural Processes (CNPs), Neural Processes (NPs), Attentive Neural Processes (ANPs).

The Neural Process Family This repository contains notebook implementations of the following Neural Process variants: Conditional Neural Processes (CN

DeepMind 892 Dec 28, 2022
Python Auto-ML Package for Tabular Datasets

Tabular-AutoML AutoML Package for tabular datasets Tabular dataset tuning is now hassle free! Run one liner command and get best tuning and processed

Sagnik Roy 18 Nov 20, 2022
A computational optimization project towards the goal of gerrymandering the results of a hypothetical election in the UK.

A computational optimization project towards the goal of gerrymandering the results of a hypothetical election in the UK.

Emma 1 Jan 18, 2022
K-FACE Analysis Project on Pytorch

Installation Setup with Conda # create a new environment conda create --name insightKface python=3.7 # or over conda activate insightKface #install t

Jung Jun Uk 7 Nov 10, 2022
Official PyTorch code for WACV 2022 paper "CFLOW-AD: Real-Time Unsupervised Anomaly Detection with Localization via Conditional Normalizing Flows"

CFLOW-AD: Real-Time Unsupervised Anomaly Detection with Localization via Conditional Normalizing Flows WACV 2022 preprint:https://arxiv.org/abs/2107.1

Denis 156 Dec 28, 2022
FishNet: One Stage to Detect, Segmentation and Pose Estimation

FishNet FishNet: One Stage to Detect, Segmentation and Pose Estimation Introduction In this project, we combine target detection, instance segmentatio

1 Oct 05, 2022
Dynamic wallpaper generator.

Wiki • About • Installation About This project is a dynamic wallpaper changer. It waits untill you turn on the music, downloads album cover if it's po

3 Sep 18, 2021
This YoloV5 based model is fit to detect people and different types of land vehicles, and displaying their density on a fitted map, according to their coordinates and detected labels.

This YoloV5 based model is fit to detect people and different types of land vehicles, and displaying their density on a fitted map, according to their

Liron Bdolah 8 May 22, 2022
Source code for the BMVC-2021 paper "SimReg: Regression as a Simple Yet Effective Tool for Self-supervised Knowledge Distillation".

SimReg: A Simple Regression Based Framework for Self-supervised Knowledge Distillation Source code for the paper "SimReg: Regression as a Simple Yet E

9 Oct 15, 2022
Awesome-AI-books - Some awesome AI related books and pdfs for learning and downloading

Awesome AI books Some awesome AI related books and pdfs for downloading and learning. Preface This repo only used for learning, do not use in business

luckyzhou 1k Jan 01, 2023
Learning to Reach Goals via Iterated Supervised Learning

Vanilla GCSL This repository contains a vanilla implementation of "Learning to Reach Goals via Iterated Supervised Learning" proposed by Dibya Gosh et

Christoph Heindl 4 Aug 10, 2022
Code release for Local Light Field Fusion at SIGGRAPH 2019

Local Light Field Fusion Project | Video | Paper Tensorflow implementation for novel view synthesis from sparse input images. Local Light Field Fusion

1.1k Dec 27, 2022
This dlib-based facial login system

Facial-Login-System This dlib-based facial login system is a technology capable of matching a human face from a digital webcam frame capture against a

Mushahid Ali 3 Apr 23, 2022
Unofficial TensorFlow implementation of the Keyword Spotting Transformer model

Keyword Spotting Transformer This is the unofficial TensorFlow implementation of the Keyword Spotting Transformer model. This model is used to train o

Intelligent Machines Limited 8 May 11, 2022
Indoor Panorama Planar 3D Reconstruction via Divide and Conquer

HV-plane reconstruction from a single 360 image Code for our paper in CVPR 2021: Indoor Panorama Planar 3D Reconstruction via Divide and Conquer (pape

sunset 36 Jan 03, 2023
A simple python stock Predictor

Python Stock Predictor A simple python stock Predictor Demo Run Locally Clone the project git clone https://github.com/yashraj-n/stock-price-predict

Yashraj narke 5 Nov 29, 2021
Official repository for ABC-GAN

ABC-GAN The work represented in this repository is the result of a 14 week semesterthesis on photo-realistic image generation using generative adversa

IgorSusmelj 10 Jun 23, 2022
Code for reproducing our analysis in the paper titled: Image Cropping on Twitter: Fairness Metrics, their Limitations, and the Importance of Representation, Design, and Agency

Image Crop Analysis This is a repo for the code used for reproducing our Image Crop Analysis paper as shared on our blog post. If you plan to use this

Twitter Research 239 Jan 02, 2023
This reposityory contains the PyTorch implementation of our paper "Generative Dynamic Patch Attack".

Generative Dynamic Patch Attack This reposityory contains the PyTorch implementation of our paper "Generative Dynamic Patch Attack". Requirements PyTo

Xiang Li 8 Nov 17, 2022