Repository to run object detection on a model trained on an autonomous driving dataset.

Overview

Autonomous Driving Object Detection on the Raspberry Pi 4

Description of Repository

This repository contains code and instructions to configure the necessary hardware and software for running autonomous driving object detection on the Raspberry Pi 4!

Details of Software and Neural Network Model for Object Detection:

  • Language: Python
  • Framework: TensorFlow Lite
  • Network: SSD MobileNet-V2
  • Training Dataset:Berkely Deep Drive (BBD100K)

The motivation for the Project

The goal of this project was to train a neural network to detect things on the road that an autonomous driving vehicle would see (eg. bus, traffic light, traffic sign, person, bike, truck, motor, car, train, rider). Then to test the trained network on lightweight hardware (i.e. Raspberry PI 4) to see how it performs in terms of processing speed and detection accuracy.

Additional Resources

Source

Reference for Source Code for the Project: https://github.com/EdjeElectronics/TensorFlow-Lite-Object-Detection-on-Android-and-Raspberry-Pi/blob/master/Raspberry_Pi_Guide.md

Special thanks to Evan from EdjeElectronics for the instructions and the majority of the code used in this project! :)

Results

Vehicle Testing Configuration

Core

  • Raspberry Pi 4 GB
  • Raspberry Pi 5MP Camera (rev 1.3)

Other

  • LED
  • 470 Ohm Resistor
  • Small breadboard
  • GPIO push button
  • 3.5 Amp USB-C Power Supply

This tissue box setup isn't the greatest, but it's what I used to mount the PI on the dashboard of my car. I then used the USB-C cable plugged into the AC outlet of my car while I drove around to record and process footage.

Issues

1.) If you get an error when trying to run the program showing the following:

ImportError: No module named cv2

Try using this tutorial to install and build opencv: https://pimylifeup.com/raspberry-pi-opencv/ The software setup steps should install OpenCV, but sometimes installing it on the Raspberry Pi can be finicky.

Setting Up Software

1.) Clone Repository:

git clone https://github.com/ecd1012/rpi_road_object_detection.git

2.) Change directory to source code:

cd rpi_road_object_detection

3.) Open command prompt and make sure pi is up to date:

sudo apt-get update && sudo apt-get upgrade

4.) Install virtual environment:

sudo pip3 install virtualenv

5.) Make virtual environment:

python3.7 -m venv TFLite-venv

6.) Activate Environment:

source TFLite-venv/bin/activate

7.) Install the dependencies:

bash get_py_requirements.sh

8.) Make sure the camera module is enabled:

sudo raspi-config

9.) Go to Intercae Options and make sure the Pi Camera is enabled.

Setting Up Hardware

10.) Connect a push button to GPIO pin 17. This will be used as input.

Help: https://www.youtube.com/watch?v=BWYy3qZ315U&ab_channel=O%27Reilly

11.) Connect an LED to GPIO PIN 4. This LED will turn on to indicate when the program is running. Make sure you use a resistor with the LED!

Help: https://www.youtube.com/watch?v=3TDJ4FmtGgk&ab_channel=O%27Reilly

12.) Connect Pi Camera Module to Raspberry Pi. Help: https://www.youtube.com/watch?v=0hrF8Wq8SSQ&ab_channel=BINARYUPDATES

Running Detection

15.) After all your hardware and software is configured correctly run the following command:

python TFLite_detection_webcam_loop.py --modeldir=TFLite_model_bbd --output_path=processed_images

Where the --output_path you specify is where you want images saved.

16.) The script will start running and wait for you to press the GPIO input button to start processing the video feed from the camera. Once you press the button, the green LED will turn on and the pi will start feeding and processing the video stream through the neural network. Processed images will be saved to the '--output_path' you specified over the command line.

17.) If you like, make a video out of the images. You can do this with gif making software, video making software, or ffmpeg. Help: https://stackoverflow.com/questions/24961127/how-to-create-a-video-from-images-with-ffmpeg

18.) Enjoy!! :)

Running on Boot

19.) If you want to start running the python script on boot, do the following:

nano ~/.bashrc

And add the following to the end of your .bashrc

#Change directories to where you cloned the repo
cd ~/rpi_road_object_detection
source TFLite-venv/bin/activate
python TFLite_detection_webcam_loop.py --modeldir=TFLite_model_bbd --output_path=processed_images

Then press CTRL+X and Press Y and enter to save.

Owner
Ethan
Personal Site: https://ethandell.tech/
Ethan
Transparent Transformer Segmentation

Transparent Transformer Segmentation Introduction This repository contains the data and code for IJCAI 2021 paper Segmenting transparent object in the

谢恩泽 140 Jan 02, 2023
Machine learning for NeuroImaging in Python

nilearn Nilearn enables approachable and versatile analyses of brain volumes. It provides statistical and machine-learning tools, with instructive doc

919 Dec 25, 2022
A Sign Language detection project using Mediapipe landmark detection and Tensorflow LSTM's

sign-language-detection A Sign Language detection project using Mediapipe landmark detection and Tensorflow LSTM. The project is built for a vocabular

Hashim 4 Feb 06, 2022
This is the code for Deformable Neural Radiance Fields, a.k.a. Nerfies.

Deformable Neural Radiance Fields This is the code for Deformable Neural Radiance Fields, a.k.a. Nerfies. Project Page Paper Video This codebase conta

Google 1k Jan 09, 2023
Differentiable architecture search for convolutional and recurrent networks

Differentiable Architecture Search Code accompanying the paper DARTS: Differentiable Architecture Search Hanxiao Liu, Karen Simonyan, Yiming Yang. arX

Hanxiao Liu 3.7k Jan 09, 2023
GalaXC: Graph Neural Networks with Labelwise Attention for Extreme Classification

GalaXC GalaXC: Graph Neural Networks with Labelwise Attention for Extreme Classification @InProceedings{Saini21, author = {Saini, D. and Jain,

Extreme Classification 28 Dec 05, 2022
Creating a custom CNN hypertunned architeture for the Fashion MNIST dataset with Python, Keras and Tensorflow.

custom-cnn-fashion-mnist Creating a custom CNN hypertunned architeture for the Fashion MNIST dataset with Python, Keras and Tensorflow. The following

Danielle Almeida 1 Mar 05, 2022
LieTransformer: Equivariant Self-Attention for Lie Groups

LieTransformer This repository contains the implementation of the LieTransformer used for experiments in the paper LieTransformer: Equivariant Self-At

OxCSML (Oxford Computational Statistics and Machine Learning) 50 Dec 28, 2022
This repository contains PyTorch code for Robust Vision Transformers.

This repository contains PyTorch code for Robust Vision Transformers.

117 Dec 07, 2022
TorchCV: A PyTorch-Based Framework for Deep Learning in Computer Vision

TorchCV: A PyTorch-Based Framework for Deep Learning in Computer Vision @misc{you2019torchcv, author = {Ansheng You and Xiangtai Li and Zhen Zhu a

Donny You 2.2k Jan 06, 2023
Official implementation of the Neurips 2021 paper Searching Parameterized AP Loss for Object Detection.

Parameterized AP Loss By Chenxin Tao, Zizhang Li, Xizhou Zhu, Gao Huang, Yong Liu, Jifeng Dai This is the official implementation of the Neurips 2021

46 Jul 06, 2022
source code the paper Fast and Robust Iterative Closet Point.

Fast-Robust-ICP This repository includes the source code the paper Fast and Robust Iterative Closet Point. Authors: Juyong Zhang, Yuxin Yao, Bailin De

yaoyuxin 320 Dec 28, 2022
Softlearning is a reinforcement learning framework for training maximum entropy policies in continuous domains. Includes the official implementation of the Soft Actor-Critic algorithm.

Softlearning Softlearning is a deep reinforcement learning toolbox for training maximum entropy policies in continuous domains. The implementation is

Robotic AI & Learning Lab Berkeley 997 Dec 30, 2022
Sample code from the Neural Networks from Scratch book.

Neural Networks from Scratch (NNFS) book code Code from the NNFS book (https://nnfs.io) separated by chapter.

Harrison 172 Dec 31, 2022
Official implementation of the RAVE model: a Realtime Audio Variational autoEncoder

RAVE: Realtime Audio Variational autoEncoder Official implementation of RAVE: A variational autoencoder for fast and high-quality neural audio synthes

ACIDS 587 Jan 01, 2023
BlueFog Tutorials

BlueFog Tutorials Welcome to the BlueFog tutorials! In this repository, we've put together a collection of awesome Jupyter notebooks. These notebooks

4 Oct 27, 2021
CondenseNet: Light weighted CNN for mobile devices

CondenseNets This repository contains the code (in PyTorch) for "CondenseNet: An Efficient DenseNet using Learned Group Convolutions" paper by Gao Hua

Shichen Liu 690 Nov 30, 2022
Face and Pose detector that emits MQTT events when a face or human body is detected and not detected.

Face Detect MQTT Face or Pose detector that emits MQTT events when a face or human body is detected and not detected. I built this as an alternative t

Jacob Morris 38 Oct 21, 2022
Keras + Hyperopt: A very simple wrapper for convenient hyperparameter optimization

This project is now archived. It's been fun working on it, but it's time for me to move on. Thank you for all the support and feedback over the last c

Max Pumperla 2.1k Jan 03, 2023
Pytorch code for our paper Beyond ImageNet Attack: Towards Crafting Adversarial Examples for Black-box Domains)

Beyond ImageNet Attack: Towards Crafting Adversarial Examples for Black-box Domains (ICLR'2022) This is the Pytorch code for our paper Beyond ImageNet

Alibaba-AAIG 37 Nov 23, 2022